Cummins Coolant Requirements and Maintenance

This service bulletin supersedes prior service bulletins concerning Cummins Inc. coolant requirements and maintenance; replace those service bulletins with this one.

This service bulletin outlines the proper application and maintenance of coolant for all Cummins engines, including gaseous fueled engines. It also updates and simplifies Cummins recommendations and guidelines for the end user.

Summary of Recommendations

Cummins Inc. cooling system general recommendations are listed below. These recommendations apply to both Standard Service Intervals and Extended Service Intervals. Refer to Section 2 or 3 for complete instructions.

- Fill up and top off cooling systems with a fully formulated antifreeze/coolant meeting CES 14603
- Replace the coolant filter(s) at every recommended coolant filter change interval
- Add liquid Extender/SCA at each filter change as necessary
- Test coolant at least twice per year for liner-pitting protection (nitrite and molybdate levels)
- Test coolant for replacement limits every 240,000 km [150,000 mi], 4000 hours, or once per year, whichever occurs first
- Replace coolant only if replacement limits have been exceeded.

Definition of Terms
Definition of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>EG</td>
<td>Ethylene Glycol</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>PG</td>
<td>Propylene Glycol</td>
</tr>
<tr>
<td>RP</td>
<td>Recommended Practice</td>
</tr>
<tr>
<td>SCA</td>
<td>Supplemental Coolant Additive</td>
</tr>
<tr>
<td>TMC</td>
<td>Technology and Maintenance Council</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>TT</td>
<td>Tolyltriazone (additive to protect yellow metals)</td>
</tr>
<tr>
<td>MBT</td>
<td>Mercaptobenzothiazole (additive to protect yellow metals)</td>
</tr>
<tr>
<td>Extender</td>
<td>Extended Service Additive (ESA)</td>
</tr>
<tr>
<td>ESI</td>
<td>Extended Service Interval</td>
</tr>
<tr>
<td>CES</td>
<td>Cummins Engineering Standard</td>
</tr>
<tr>
<td>Coolant</td>
<td>As used in this bulletin, coolant refers to the liquid mixture in the engine or vehicle cooling system that functions to maintain an engine temperature in the designed range. In general, the coolant is made up of water, glycol and additives.</td>
</tr>
<tr>
<td>Antifreeze</td>
<td>The glycol portion of the coolant whose main function is to control the freezing and boiling point of the coolant.</td>
</tr>
<tr>
<td>Fully Formulated</td>
<td>Antifreeze or coolant that contains the correct amount of additives to be used in a heavy duty engine. Fully formulated antifreeze/coolant meets D6210 or D6211.</td>
</tr>
<tr>
<td>Partially Formulated</td>
<td>Antifreeze or coolant that requires a &quot;precharge&quot; of SCA to protect against liner pitting and hot surface scaling. Partially formulated antifreeze/coolant does not meet D6210 or D6211.</td>
</tr>
<tr>
<td>Treated Water Coolant</td>
<td>Water containing all additives necessary for use as a coolant in heavy duty engines. Treated water coolant does not contain glycol.</td>
</tr>
<tr>
<td>Unit</td>
<td>0.3 units per liter [1 unit per gallon] is equal to 1000 ppm of Nitrite (as NO₂).</td>
</tr>
</tbody>
</table>

Section 1 - Introduction

Some fully formulated products are labeled with the word "CONCENTRATE" or "ANTIFREEZE" when water is not included. Other fully formulated products are labeled with the words "PREDILUTED", "PREMIX", or "COOLANT" when the antifreeze is already premixed with high purity water.

Cummins Inc. Coolant Recommendations

Cummins Inc. coolant recommendations have evolved over time to reflect changes in diesel engine and coolant technology, environmental regulations, and customer needs.

Since 1995, Cummins Inc. has recommended the use of only fully formulated coolants meeting
ASTM D6210/TMC RP 329 (EG - ethylene glycol) and ASTM D6211/TMC RP 330 (PG - propylene glycol) specifications.

However, Cummins Inc. has recently discovered significant weaknesses in some coolants meeting these ASTM specifications. Therefore, a new Cummins Engineering Standard, CES 14603, has been developed to insure coolant used in Cummins engines will meet the requirements of all engine components. Refer to Attachment 2 for more information on CES 14603.

Cummins Inc. guidelines prior to 1995 permitted the use of fully formulated antifreezes and coolants meeting ASTM D6210 or D6211, but primarily addressed the use of partially formulated products meeting ASTM D4985 or GM 6038M, which were referred to as "heavy duty" based on the low-silicate content. These partially formulated coolants contained buffering compounds and corrosion inhibitors but did not provide liner pitting and scale protection. To provide total heavy-duty cooling system protection, a mixing process was required to add SCA. This mixing process provided opportunity for human error, which often resulted in liner or block pitting from under-concentration during initial fill or SCA dilution during top-off of the cooling system. Because of these issues, the use of partially formulated antifreezes is unacceptable.

Fully formulated antifreezes are ideally suited for topping off cooling systems but do not eliminate the need for additive replenishment. Routine additive replenishment has always been required to offset normal additive depletion processes.

During normal additive replenishment, it is possible to achieve an additive concentration that is higher than desired. This is because Cummins-recommended replenishment rates have been aimed to compensate for coolant loss. If no coolant loss is experienced, gradual Extender/SCA concentration increase is possible. Over-concentration can be avoided by test kit monitoring.

However, the use of test kits to maintain a concentration near the minimum side of the acceptable range has never been acceptable nor recommended. This practice is responsible for many pitting failures and should not be followed.

Coolant Performance Characteristics

Table 1 below lists the various types of coolants and the performance characteristics of each. As mentioned earlier in this section, only fully formulated antifreeze/coolant meeting CES 14603 is recommended for use in Cummins engines.

Table 1 - Coolant Type Vs. Performance Characteristics
<table>
<thead>
<tr>
<th></th>
<th>Light Duty</th>
<th>Heavy Duty/Low Silicate</th>
<th>Low Silicate and SCA</th>
<th>Fully Formulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM Specification</td>
<td>D-3306</td>
<td>D-4985</td>
<td>-</td>
<td>D-6210/D6211</td>
</tr>
<tr>
<td>Buffering</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Corrosion Protection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Foam Control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Silicate Limit</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Liner-Pitting Protection</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Scale/Deposit Control</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SCA Precharge Required</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>Silicate Gelation</td>
<td>Primary cause</td>
<td>Limits problem</td>
<td>Can occur with SCA overdose</td>
<td>No</td>
</tr>
<tr>
<td>TDS Buildup in Coolant</td>
<td>-</td>
<td>-</td>
<td>Can exceed 5 percent</td>
<td>Remains below 3 percent</td>
</tr>
<tr>
<td>ESI Capable</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>System Top-Off</td>
<td>SCA added with antifreeze/coolant</td>
<td>SCA added with antifreeze/coolant</td>
<td>SCA added with antifreeze/coolant</td>
<td>Antifreeze/Coolant only</td>
</tr>
</tbody>
</table>

**Topping Off and Dilution of Cooling Systems**

Coolant loss can lead to dilution of corrosion and liner-pitting protection additives due to incorrect top-off practices. This is the root cause of most cases of liner-pitting. The top-off process is simplified by the use of fully formulated antifreezes and coolants because SCA addition is **not** required when topping off the system. Even small leaks at the hose clamps, radiator cores, cylinder head gaskets, and water pumps result in significant coolant loss over time. Dilution of critical additives is avoided, regardless of the amount of coolant loss, by using fully formulated products for system top-off.

**Standard Service Interval Coolant vs. Extended Service Interval Coolant**

Both types of coolant follow the same general test schedule:

- Test at least twice a year for additive and glycol levels
- Test coolant at 240,000 km [150,000 mi], 4000 hours, or once per year, whichever occurs first, to determine if the coolant **must** be replaced.

The advantage to using an extended service interval coolant is that typically the coolant **only** needs additive replenishment and filter change once per year, compared to the standard service interval where the additive and filter is replenished at each oil change interval.
Section 2 of this bulletin details the standard service interval and Section 3 details the extended service interval.

Additional Information

If you have any questions about information in this bulletin or would like more information, please contact 1-800-DIESELS.

Section 2 - Standard Service Interval

This section outlines the recommended maintenance practices for cooling systems when using a standard service interval.

⚠️ WARNING ⚠️

A small amount of coolant can leak when servicing the coolant filter with the shutoff valve in the OFF position. To reduce the possibility of personal injury, avoid contact with hot coolant.

⚠️ WARNING ⚠️

Coolant is toxic. Keep away from children and pets. If not reused, dispose of in accordance with local environmental regulations.

For an engine using standard service interval coolant, the additive and glycol levels must be tested once every 6 months.

The following steps are required to comply with Cummins Inc. recommendations for initial filling and maintenance of cooling systems.

- Fill the cooling system with premixed fully formulated coolant or with a 50/50 mixture of high-quality water (see Section 9 - Water Quality Requirements) and fully formulated concentrated antifreeze. The fully formulated coolant or antifreeze, either EG or PG, must meet CES 14603. Cummins Inc. recommends using Fleetguard® coolants containing DCA4 chemistry; however, Fleetguard® coolants containing DCA2 chemistry are acceptable.
- Top off the cooling system as needed using only fully formulated antifreeze/coolant meeting CES 14603.
- Change the coolant filter(s) at every oil change. The coolant filter must meet CES 14315.
- Replenish depleted coolant additives at every oil change or as needed by replacing the coolant filter(s) with the correct filter(s) or liquid SCA. Refer to the remainder of this section for filter sizes and part numbers. Very large cooling systems can require additional liquid SCA if standard coolant filters do not provide sufficient SCA replenishment.
- Test the coolant twice a year for freeze protection and additive levels. Refractometer measurements are needed for accurate freeze protection measurements. Test strips will provide an indication of freeze protection and additive levels. Refer to Section 6 - Coolant Testing for further information and test strip part numbers.
- Test the coolant every 240,000 km [150,000 mi], 4000 hours or once per year, whichever occurs first, to determine if it must be replaced. Refer to Section 6 - Coolant Testing for
further information and test strip part numbers.
- Replace the coolant only if the replacement limits are exceeded.

SCA Levels:

Test the SCA level a minimum of twice a year.

- If the SCA concentration level is between 0.3 and 1.3 units/liter [1.2 and 5.0 units per gallon], either install a chemical filter containing the appropriate dosage of SCA or add the equivalent liquid SCA dosage and install a chemical free filter. For large cooling systems, it can be necessary to replenish SCA with both a chemical filter and liquid SCA.
- If the SCA concentration level is less than 0.3 units/liter [1.2 units per gallon], add 0.15 liters [5 ounces] of Fleetguard® DCA4 or Fleetcool liquid per 3.8 liters [1 gallon] of cooling system capacity and install a chemical filter.
- If the SCA concentration level is greater than 1.3 units/liter [5.0 units per gallon], install a chemical free filter. Do not install a chemical coolant filter or add liquid Extender/SCA. Test the SCA level at each successive oil change. When SCA units drop below 1.3 units per liter [5.0 units per gallon], resume installing chemical filters or using the equivalent liquid SCA dosage and installing chemical free filters.

Table 2 - Standard Service Interval Fleetguard® Filter Part Numbers

<table>
<thead>
<tr>
<th>SCA Units</th>
<th>DCA4 Service Filters Part Number</th>
<th>DCA2 (Fleetcool) Service Filters Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>WF2071</td>
<td>WF2051</td>
</tr>
<tr>
<td>8</td>
<td>WF2073</td>
<td>WF2053</td>
</tr>
<tr>
<td>12</td>
<td>WF2074</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>WF2075</td>
<td>WF2054</td>
</tr>
<tr>
<td>23</td>
<td>WF2076</td>
<td>WF2055</td>
</tr>
<tr>
<td>8</td>
<td>WF2126 (for ISX/Signature only)</td>
<td></td>
</tr>
<tr>
<td>Chemical Free Filter</td>
<td>WF2077</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 - Standard Service Interval Fleetguard® Liquid Additive Part Numbers

<table>
<thead>
<tr>
<th>Size</th>
<th>SCA Units</th>
<th>DCA4 Liquid Part Number</th>
<th>DCA2 (Fleetcool) Liquid Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47 liter [1 pint]</td>
<td>5</td>
<td>DCA60L</td>
<td>DCA30L</td>
</tr>
<tr>
<td>1.89 liters [2 quarts]</td>
<td>20</td>
<td>DCA65L</td>
<td>DCA35L</td>
</tr>
<tr>
<td>3.78 liters [1 gallon]</td>
<td>40</td>
<td>DCA70L</td>
<td>DCA40L</td>
</tr>
<tr>
<td>18.9 liters [5 gallons]</td>
<td>200</td>
<td>DCA75L</td>
<td>DCA45L</td>
</tr>
<tr>
<td>208 liters [55 gallons]</td>
<td>2200</td>
<td>DCA80L</td>
<td>DCA50L</td>
</tr>
</tbody>
</table>

Section 3 - Extended Service Interval

This section covers the requirements for coolant products that provide extended service maintenance intervals.
Extended service interval (ESI) coolant is defined as a coolant capable of a minimum general routine service interval of 240,000 km [150,000 mi], 4000 hours, or 1 year, whichever occurs first.

Successful usage of ESI products will be possible only if a systematic approach to coolant maintenance is followed by the user. This means using the ESI system of coolant products for all coolant maintenance at the fleet shop as well as on the road. Use of the proper coolant is vital for successful ESI maintenance. Coolant must meet the requirements stated in this section.

It is critical to top off only with fully formulated coolants meeting CES 14603. If control of top-off can not be accomplished, do not consider extended service and use the standard service interval as described in Section 2.

Extended Service Maintenance

- Fill the cooling system with premixed fully formulated coolant or with a 50/50 mixture of high-quality water (see Section 9 - Water Quality Requirements) and fully formulated concentrated antifreeze. The fully formulated coolant or antifreeze, either EG or PG, must meet CES 14603. Cummins Inc. recommends using Fleetguard® ES™ Compleat.
- Some ESI systems do not require the initial use of an Extender additive in liquid form or from a slow-release filter. In these systems, the antifreeze/coolant must provide cavitation-corrosion (liner-pitting) protection through the use of the liner-pitting protection additives in the concentrations listed in Table 4. Extender/ESA is then added at each extended service interval.

Table 4 - Liner Pitting Protection Additive Levels Required at Initial System Fill

<table>
<thead>
<tr>
<th>Additive</th>
<th>Premixed Antifreeze/Coolant (ppm)</th>
<th>Type of Coolant Additive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Nitrite (NO&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;-1&lt;/sup&gt;)</td>
<td>2000</td>
<td>DCA2</td>
</tr>
<tr>
<td>Minimum Levels of Nitrite (NO&lt;sub&gt;2&lt;/sub&gt;&lt;sup&gt;-1&lt;/sup&gt;) and Molybdate (MoO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;-2&lt;/sup&gt;)</td>
<td>1300&lt;sup&gt;2&lt;/sup&gt;</td>
<td>DCA4</td>
</tr>
</tbody>
</table>

1. Concentrated antifreeze/coolant levels are double the premixed levels
2. A combination of nitrite and molybdate can not contain less than 500 ppm of either additive.

- Top off the cooling system as needed using only fully formulated antifreeze/coolant meeting CES 14603.
- The coolant must be tested twice per year for freeze protection and additive levels. A Refractometer must be used for accurate freeze protection measurements. Test strips will provide an indication of freeze protection and additive levels. Refer to Section 6 - Coolant Testing for further information and test strip part numbers.
- After 240,000 km [150,000 mi], 4000 hours, or 1 year, which ever occurs first, do the following:
  - Change the coolant filter(s). The coolant filter must meet CES 14315.
  - Replenish depleted coolant additives either by using slow-release ES™ chemical filter or adding ES™ Extender liquid. Larger cooling systems can require the use of a chemical filter in conjunction with liquid additive. Refer to the remainder of this section.
for filter and liquid part numbers.
- Test the coolant to determine if it **must** be replaced. Refer to Section 6- Coolant Testing for further information and test strip part numbers.
- Replace the coolant **only** if the replacement limits are exceeded.

**Extender/ESA Levels**

Test the SCA level a minimum of twice a year.

- If the SCA concentration level is between 0.3 and 1.3 units/liter [1.2 and 5.0 units per gallon], either install a chemical filter containing the appropriate dosage of SCA or add the equivalent liquid SCA dosage and install a chemical free filter. For large cooling systems, it can be necessary to replenish SCA with both a chemical filter and liquid SCA.
- If the SCA concentration level is less than 0.3 units/liter [1.2 units per gallon], add 0.15 liters [5 ounces] of Fleetguard® Extender liquid per gallon of cooling system capacity and install a chemical filter.
- If the SCA concentration level is greater than 1.3 units/liter [5.0 units per gallon], install a chemical free filter. Do **not** install a chemical coolant filter or add liquid Extender/ESA. Test the SCA level at each successive oil change. When SCA units drop below 1.3 units per liter [5.0 units per gallon], resume installing chemical filters or using the equivalent liquid SCA dosage and installing chemical free filters.

**Extender Requirements**

⚠️ **CAUTION** ⚠️

Extenders used in ESI systems are not fully formulated and must not be used in treated water coolants. Their usage can result in engine damage. See Section 8.

The Extender replaces the additives in the coolant that are lost due to depletion. It can be added as a liquid directly to the coolant or as a solid contained in a coolant filter.

Cummins Inc. recommends using a Fleetguard® ES™ slow release filter or ES™ Extender liquid.

**Performance Requirements**

The Extender **must** contain sufficient liner-pitting additives to increase the levels of nitrite or nitrite plus molybdate in the engine coolant by the following amounts:

- At least 800 ppm (0.8 units per gallon) of nitrite (NO₂⁻)
- Or a combined total of at least 520 ppm (0.8 units per gallon) of nitrite (NO₂⁻) and molybdate (MoO₄²⁻).

A combination of nitrite and molybdate can **not** contain less than 200 ppm of either additive.

**EXAMPLE:**

Cooling system capacity = 20 gallons
Current concentration of nitrite: 2000 ppm (2 units) 0.8 units per gallon x 20 gallons = 16 units
required
Add 1 quart (CC2840) that contains 16.8 units
New concentration after adding Extender: 2840 ppm (2.84 units)

Storage Stability

Liquid Extenders typically have a shelf life of at least 2 years from the time of manufacture when stored at temperatures ranging from -7° to 55°C [19° to 131°F].

Solid material, liquid turbidity, or layering at the top of the liquid is allowed if it will dissolve and disperse by stirring the solution and warming it to a temperature between 2° to 67°C [36° to 153°F].

Solid, slurry, and paste forms of Extender must dissolve completely in hot engine coolant. They must be formulated and packaged to prevent chemical or physical change during storage temperatures ranging from -7° to 55°C [19° to 131°F] regardless of humidity.

Fleetguard® ESI Product Part Numbers

Table 5 - Extended Service Fleetguard® Filter Part Numbers

<table>
<thead>
<tr>
<th>ES™ Filters (DCA4 Chemistry)</th>
<th>ES™ Filters (DCA2 Chemistry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>SCA Units</td>
</tr>
<tr>
<td>WF2121</td>
<td>15 (slow release)</td>
</tr>
<tr>
<td>WF2122</td>
<td>0</td>
</tr>
<tr>
<td>WF2123</td>
<td>0 (40 percent more filter media)</td>
</tr>
</tbody>
</table>

ISX Engine

<table>
<thead>
<tr>
<th>Part Number</th>
<th>SCA Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>WF2125</td>
<td>15 (slow release)</td>
</tr>
<tr>
<td>WF2127</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6 - Extended Service Fleetguard® Liquid Additive Part Numbers

<table>
<thead>
<tr>
<th>ES™ Extender Liquid</th>
<th>Amount</th>
<th>SCA Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2843</td>
<td>0.47 liter [1 pint]</td>
<td>8.4 units</td>
</tr>
<tr>
<td>CC2840</td>
<td>0.95 liters [1 quart]</td>
<td>16.8 units</td>
</tr>
<tr>
<td>CC2841</td>
<td>208 liters [55 gallons]</td>
<td>3696 units</td>
</tr>
</tbody>
</table>

Table 7 - Fleetguard® ES™ Compleat™ Product Listing
<table>
<thead>
<tr>
<th>Quantity</th>
<th>ES™ Compleat™ EG</th>
<th>ES™ Compleat™ PG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentrate</td>
<td>Premix</td>
</tr>
<tr>
<td>Bulk</td>
<td>CC2822</td>
<td>CC2827</td>
</tr>
<tr>
<td>Totes</td>
<td>CC2823</td>
<td>CC2834</td>
</tr>
<tr>
<td>Drums</td>
<td>CC2821</td>
<td>CC2826</td>
</tr>
<tr>
<td>Pails</td>
<td>CC2847</td>
<td>CC2848</td>
</tr>
<tr>
<td>Gallons</td>
<td>CC2820</td>
<td>CC2825</td>
</tr>
</tbody>
</table>

1. The part numbers listed are for boxes that contain 6 gallons.

Table 8 - Extended Service Interval Identification Sticker Part Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Sticker</td>
<td>LT 20276</td>
</tr>
<tr>
<td>EG Radiator Sticker</td>
<td>LT 20299</td>
</tr>
<tr>
<td>PG Radiator Sticker</td>
<td>LT 20300</td>
</tr>
</tbody>
</table>

Section 4 - Unacceptable Maintenance Practices for Cooling Systems

⚠️ WARNING ⚠️

All diesel engines with wet liners are subject to liner pitting if the cooling system is not correctly maintained. Underconcentration (below 0.3 units per liter [1.2 units per gallon] of Extender/SCA) results in liner cavitation and possible engine failure. Overconcentration (above 1.3 units per liter [5.0 units per gallon] of additives) or the use of high-silicate antifreeze can result in silicate gelation or water pump seal leakage. The following practices are considered unacceptable and can lead to engine failure.

Unacceptable Practices

- Use of high-silicate antifreeze
- Underconcentration or overconcentration of Extender/SCAs
- Use of antifreezes/coolants that are not fully formulated (for instance, GM 6038M or ASTM D4985 antifreeze)
- Use of sealing additives (stop-leak) in the cooling system
- Use of soluble oils in the cooling system
- Use of poor-quality water. See Section 9 for water quality requirements
- Use of antifreeze, Extender/SCA, or coolant filter(s) that do not meet the specifications indicated in this service bulletin.

Section 5 - Recommended Maintenance Practices for Cooling Systems of Parent Bore (Non-Linered) Engines
The B Series engine normally does not require Extender/SCA because this engine normally does not experience cast-iron cavitation corrosion. The Cummins B Series engine has not shown any tendency toward cast-iron cavitation corrosion. Also, the B Series engine does not have an integral coolant filter.

Coolant maintenance requirements for the Cummins B series engine depends on the application.

Light duty applications can use coolant meeting ASTM D4985 and follow the maintenance schedule in the appropriate Owners manual. However, if ASTM D4985 antifreeze is used, it must additionally meet the elastomer capability section of CES 14603. See Attachment 2 for more information on CES 14603.

A coolant filter must be installed on B Series engines when used in higher utilization/commercial applications. The general recommendations in Section 2 or Section 3 must also be followed. Fleetguard® offers the following parts to install a coolant filter on B series engines:

Standard Duty Filter Head - 204163 S  
Heavy Duty Filter Head - 3904378 S  
Mounting Bracket - 256535

Use of fully formulated antifreeze/coolant in this engine is acceptable but not required. If fully formulated antifreeze/coolant is used, it must meet CES 14603.

Section 6 - Coolant Testing

Coolant testing is required for two reasons:

1. To determine the additive concentration and glycol level of the coolant. This insures that adequate liner pitting and freeze point protection are achieved.
2. To determine if the coolant must be replaced due to contamination.

Coolant testing for additive and glycol levels must be performed at least twice a year. The coolant must also be tested for replacement limits 240,000 km [150,000 mi], 4000 hours, or once a year, whichever occurs first.

Additive and glycol testing is also recommended when the following occur:

- Coolant loss between test intervals exceeds 10 to 15 percent of system capacity
- Water pump seal, radiator core or other external leakage is apparent
- Anytime the coolant condition is unknown, or corrosion is apparent within the cooling system
- Anytime a cooling system component is repaired or replaced.

Coolant Replacement Limits

Table 9 below lists the limits for various coolant contaminants.

Table 9 - Coolant Replacement Limits
Contaminant | Allowable Level
---|---
Sulfate (SO\textsubscript{4}²⁻) | 1500 ppm, maximum
Chloride (Cl⁻¹) | 200 ppm, maximum
Oil or fuel contamination | Coolant **must not** contain oil or fuel
Ph | 6.5 \textsuperscript{1}, minimum
Grease, solder bloom, silica gel, rust, or scaling | Coolant **must** be free of these contaminants

1. The minimum pH for a replacement limit can vary according to the product. Consult the product manufacturer for the pH limit. A pH less than 6.5 is always unacceptable. For Fleetguard\textsuperscript{®} ES™ Compleat™ coolant, the coolant **must** be replaced if the pH is below 7.5 pH.

If the coolant does **not** meet the replacement limits of sulfate, chloride, or pH, it **must** be drained and replaced with new coolant meeting CES 14603. However, if the coolant is contaminated with oil, fuel, grease, solder bloom, silica gel, rust, or scaling, the system **must** be drained, cleaned and refilled. Refer to Section 11 for details on cleaning the cooling system.

**Coolant Testing Kits**

Coolant testing and monitoring are useful tools for tracking and controlling coolant condition and performance. The methods available for testing coolants include field test kits, portable refractometers, and coolant analysis programs. Cummins Inc. recommends using the following Fleetguard\textsuperscript{®} products:

**Coolant Additive and Glycol level testing:**

- Three-Way\textsuperscript{™} Heavy Duty Coolant Test Kits

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Quantity</th>
<th>Foil Sealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2602</td>
<td>50</td>
<td>No</td>
</tr>
<tr>
<td>CC2602A</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>CC2602B</td>
<td>100</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**Coolant testing for contamination/replacement limits:**

- Quick-Chek™ Test Kits

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Quantity</th>
<th>Foil Sealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2607B</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>CC2607C</td>
<td>25</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**Coolant freeze point testing**
• Refractometer, part number CC2806

Coolant analysis program

• Monitor C™ program, part number CC2700

The Three-Way™ heavy duty coolant field test kit is appropriate for testing nitrite-molybdate formulations, such as Fleetguard® DCA-4 as well as nitrite formulations such as Fleetguard® DCA2 (Fleetcool).

Fleetguard® Quik-Chek™ test strips will detect contamination levels that indicate replacement of the coolant is required.

The Monitor C™ program can evaluate most new or used coolant formulations.

Field test kits offer the benefit of on-site measurements and are designed to approximate Extender/SCA levels and freezing points. When required, freezing points can be more accurately determined with on-site refractometer readings.

When using the Fleetguard® Three-Way™ heavy duty coolant test kit, it is important to follow the instructions provided in the kit. Coolant must be collected from the radiator or block drain but never from the surge tank or coolant recovery bottle. Each test strip contained in the kit has three test patches and can be dipped directly into the coolant. No other chemical dilution is required. Each test patch has a specific function. One test patch measures nitrite (NO$_2^-$), another measures molybdate (MoO$_4^{2-}$), and another measures freezing point protection. Because the kit measures nitrite and molybdate separately, it can reliably measure both Fleetguard® SCA formulations. Cummins Inc. recommendation for a nitrite-molybdate formulation for pitting protection is explained in Attachment 1 - Summary of Coolant Additive Technology.

Coolant analysis programs are performed in laboratories and offer additional, useful information but require mailing coolant samples to a laboratory. Laboratory measurements typically include the following:

• pH level
• Extender/SCA level
• Freezing point protection
• Buffer level
• Dissolved solids
• Silicate level
• Metal corrosion products.

Correct interpretation of laboratory data can provide additional guidance in coolant treatment effectiveness and early warning detection. Interpretation and further treatment action(s) are generally provided with laboratory results. Therefore, laboratory testing is typically very cost effective for the long term when used to optimize cooling system performance and life. However, it must not be used as a method for minimizing treatment.

Refer to Attachment 3 for a sample Monitor C™ report.

Section 7 - Antifreeze
The primary purpose of antifreeze is to lower the freezing point of the coolant. Additional performance characteristics of coolants that are affected by the use of antifreeze include boiling point and vapor pressure. Antifreeze decreases vapor pressure, which is very beneficial to the reduction of corrosion cavitation/liner pitting. This characteristic is the primary basis for Cummins Inc. requirement for increased SCA levels when antifreeze falls below 40 percent by volume.

A 50/50 mixture of antifreeze and water provides optimum boiling and freezing point protection for engines. An antifreeze concentration in excess of 60 percent must never be used, except in arctic climates, since it increases the possibility of forming cooling system gel, which results as silicates precipitate out of solution. However, an antifreeze concentration of less than 40 percent increases the possibility of coolant freezing and liner pitting. Therefore, Cummins Inc. recommends an antifreeze concentration range of 40 to 60 percent.

Fluids presently used in antifreeze are ethylene glycol (EG) and propylene glycol (PG). Diesel engine antifreeze has primarily used EG products because they are less expensive than PG products. However, some applications require less toxic coolant products and have driven the use of PG. The comparative properties are similar for EG and PG and are listed below. Properties of pure water are shown for comparison.

Table 10 - Properties of EG and PG Antifreeze vs. Water

<table>
<thead>
<tr>
<th>Property</th>
<th>EG (percent by volume)</th>
<th>PG (percent by volume)</th>
<th>Pure H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycol Concentration</td>
<td>40 50 60</td>
<td>40 50 60</td>
<td>0</td>
</tr>
<tr>
<td>Specific Gravity, 16°C [60°F]</td>
<td>1.062 1.076 1.088</td>
<td>1.038 1.043 1.047</td>
<td>1.000</td>
</tr>
<tr>
<td>atmospheric pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 8 - Treated Water Coolant

⚠️ CAUTION ⚠️

The recommendations in this section can in no way be interpreted as an endorsement by Cummins Inc. to use treated water in place of antifreeze/coolant.

⚠️ CAUTION ⚠️

Engines using cooled exhaust gas recirculation must not use treated water coolant. The use of coolant with 40 to 60 percent antifreeze is mandatory on these engines. This is due to increased coolant temperatures.

For purposes of this document, any coolant mixture with less than 40 percent antifreeze is
considered to be "treated water" and requires increased supplemental coolant additives (SCA) as described in this section. Cummins Inc. does not recommend that water treated with additives be used in place of fully formulated antifreeze/coolant. However, it is recognized that certain applications operating only in warm-weather areas may have compelling reasons to use treated water coolants. This section gives some guidance on using treated water coolant in place of antifreeze/coolant if the user chooses to do so.

Customers must also be advised that not using fully formulated antifreeze at 40 to 60 percent glycol levels will reduce the level of engine protection against boil over, liner pitting, water pump cavitation, corrosion, scale and deposit formation, heater core freeze up, and microbial deterioration. Not using antifreeze can also decrease engine and vehicle cooling system component life.

NOTE: Minimum SCA level required for treated water coolant is 0.8 units per liter [3 units per gallon] and not 0.3 units per liter [1.2 units per gallon] as required in other sections of this bulletin.

Supplemental coolant additive (SCA) levels between 0.8 to 1.3 units per liter [3 to 5 units per gallon] must be achieved and maintained through routine replenishment. Replenishment is necessary to make up for depleted SCA chemicals that are spent during normal operation. Incorrect concentration levels can be avoided by usage of the test kit described in Section 6. Cummins Inc. requires the use of quality water (see Section 9) and SCA meeting the ASTM D5752 specification, (see Attachment 2). The greater the water concentration, the more important its purity.

The following steps are required for initial filling and maintenance of treated water cooling systems.

**CAUTION**

Marine engines must use a minimum of 25 percent antifreeze/coolant for both initial fill and topping off, and must maintain high SCA levels as described below. Treated water coolants with less than 25 percent antifreeze must never be used in marine engines.

- Fill the cooling system with high-quality water (Marine engines use minimum 25 percent antifreeze with high-quality water) and supplemental coolant additive (Fleetguard® DCA-4 at a level of 5 units per gallon. Chemical filters must not be used to precharge water for use as treated water coolant.
- Fit the system with chemical-free filters. Chemical filters must not be used to treat water in a treated water cooling system because the additives they contain may not meet the D5752 specification.
- Change the coolant filter(s) at every oil change.
- Top off the cooling system using only a mixture of high-quality water (Marine engines use minimum 25 percent antifreeze with high-quality water) and SCA at a level of 5 units per gallon.
- Test the SCA level a minimum of twice per year. Refer to Section 6 - Coolant Testing for further information. If the SCA level is found to be below 3.0 units, the frequency of testing and replenishment must be increased. The SCA level must never be allowed to fall below 3.0 units per gallon.
• Test the coolant once per year, 240,000 km [150,000 mi], or 4000 hours, whichever occurs first, to determine if it **must** be replaced. Refer to Section 6 - Coolant Testing for further information and test strip part numbers.
• If SCA concentration level is below 5.0 units per gallon, add liquid SCA to bring the level up to at least 5.0 units per gallon. Do **not** exceed 6.0 units per gallon.

The recommended SCA is Fleetguard®’s liquid DCA4 containing molybdates as well as nitrites. In addition to providing the needed liner and block protection, the engine’s tolerance of excess concentrations of DCA4 is higher as compared to DCA2. Fewer dissolved solids are used in the DCA4 chemical formulation, which reduces the tendency for water pump seal buildup and leakage. SCA formulations that do **not** contain molybdates, such as Fleetguard®’s liquid Fleetcool (DCA-2), can be successfully used if excess concentrations are avoided.

Chemical filters **must not** be used to treat water because the additives they contain can possibly **not** meet the D5752 specification.

**Section 9 - Water Quality Requirements**

Cooling systems perform best with distilled or deionized water. If distilled or deionized water is **not** available, the quality of the water used **must** meet all the requirements listed below. Excessive levels of calcium and magnesium contribute to scaling problems, and excessive levels of chloride and sulfate cause cooling system corrosion. If water quality is unknown, it can be tested with the Fleetguard® Monitor C™ program or Water-Chek™ test strip. Water test results can also be obtained from local water utility departments. Test data **must** show the following elements, and the levels **must not** exceed the published limits for use in cooling systems.

**Table 11 - Water Quality Requirements**

<table>
<thead>
<tr>
<th>Element</th>
<th>Maximum Level Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium, Magnesium (Hardness)</td>
<td>170 ppm (as CaCO₃)</td>
</tr>
<tr>
<td>Chloride</td>
<td>40 ppm (as Cl⁻¹)</td>
</tr>
<tr>
<td>Sulfate</td>
<td>100 ppm (as SO₄⁻²)</td>
</tr>
</tbody>
</table>

Fleetguard® Water-Chek™ Test Strip, Part Number CC2609, can be used to determine the quality of make-up and shop tap water. The Water-Chek™ test strip measures, Hardness, pH and Chloride levels in make up water.

**Section 10 - Maintenance Records**

Accurate maintenance records are important. Maintenance programs **must** be accompanied by accurate record-keeping practices. Records **must** be capable of supplying the information required for the following:

• Support diagnostic and troubleshooting procedures involving the cooling system
• Support the investigation of potentially warrantable failures
• Forecast repairs leading to the prevention of failures.

Routine cooling system maintenance records **must** include the following information:
- Date of service and actions taken during service
- Accumulated vehicle and coolant hours
- Extender/SCA level when measured
- Freezing point or antifreeze concentration as a percent of coolant volume
- Coolant top-off quantity
- Laboratory analysis readings (where available).

Section 11 - Cleaning the Cooling System

Cooling System Cleaners

⚠️ WARNING ⚠️

Failure to purge cleaning chemicals sufficiently can result in contamination of the new coolant during the refill process, which can lead to engine failure.

⚠️ CAUTION ⚠️

Coolants and cooling system cleaning and flushing fluids that contain 5 ppm or more of lead or 0.5 ppm of benzene are considered hazardous according to federal law in the United States of America. Disposal must be done in accordance with local, state, and federal laws.

Routine cleaning of cooling systems is not recommended. However, inadequate maintenance practices, incorrect use of coolant products, or an engine component failure (such as an oil cooler element) can lead to problems that require cleaning the cooling system. Cummins Inc. recommends the use of cleaning products when one or more of the following contaminants are found in the cooling system:

- Silicate gel
- Oil, grease or fuel
- Scale
- Rust
- Solder bloom.

To remove oil or fuel contamination from a cooling system, a low foaming cleaner specifically designed for oil removal must be used. Fleetguard® Restore™ Heavy-Duty Cleaner is an alkaline based product that has recently been modified to perform as an oil and grease super cleaner. In addition, it can also effectively remove silicate gelation from a cooling system.

For cleaning poorly maintained or severely contaminated cooling systems, an acid based cleaner is recommended. Fleetguard® Restore Plus™ Heavy-Duty Cleaner is an acid based product that is excellent in removing rust, scale, solder bloom, and other corrosion contaminants from the cooling system.

Table 12 below lists various contaminants and the cleaning performance of each cleaner with respect to those contaminants. The correct cleaner must be chosen based on the type of
contamination.

Table 12 - Cooling System Cleaner Application Chart

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Fleetguard® Restore™ (Alkaline) or Equivalent Product</th>
<th>Fleetguard® Restore Plus™ (Acid) or Equivalent Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicate gel</td>
<td>Excellent</td>
<td>Poor</td>
</tr>
<tr>
<td>Oil, grease and fuel</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Scale</td>
<td>Poor</td>
<td>Excellent</td>
</tr>
<tr>
<td>Rust</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Solder bloom</td>
<td>Poor</td>
<td>Good</td>
</tr>
</tbody>
</table>

Cooling systems must be cleaned carefully when any of the above conditions are apparent. Overheating can also accompany the above conditions. If the cooling system is overheating, inspect the system to determine if it requires cleaning. It is very important to flush the cooling system of chemical cleaners completely and thoroughly at the conclusion of the cleaning process. This must be done with water and will require more than one flushing to purge the cooling system of the cleaning chemicals. See the remainder of this section for recommended cleaning procedure.

⚠️ WARNING ⚠️

When using chemical products for cleaning, follow the manufacturer’s recommendations for use and disposal. Wear goggles and protective clothing to avoid personal injury.

⚠️ WARNING ⚠️

Some solvents are flammable and toxic. Read the manufacturer’s instructions before using.

⚠️ CAUTION ⚠️

The use of products containing hydrochloric acid, will not result in adequate system cleanup and can attack cooling system materials.

⚠️ CAUTION ⚠️

Prolonged use of any cleaner, greater than 3 hours, is not recommended.

Cleaning Procedure for Removal of Lubricating Oil and Fuel from the Engine Cooling System
Using Fleetguard® Restore™ Liquid Cleaner

Prior to cleaning the cooling system, install adequate coolant system draincocks, fittings and hoses to allow the coolant to drain quickly. The system must be drained immediately upon engine shut down. Therefore, it is suggested that a tee fitting be installed in the fill line to allow the top tank/expansion tank to drain quickly. In addition, a fabricated tee connection must be installed in the lower radiator out plumbing if sufficient drain ports are not available to drain the system quickly.

1. Operate the engine at 1200 to 1500 RPM for 30 minutes with sufficient load to open the thermostat(s) to produce flow through the radiator. Also, make certain that flow is achieved through any cab heater cores or auxiliary heat exchangers.

2. Drain the contaminated coolant from the cooling system using available radiator, cylinder block and lower radiator hose drain ports. Flush the cooling system with hot tap water as much as possible before beginning the chemical flush procedure. Use caution when handling hot coolant and dispose of the used coolant in an approved manner.

3. Pour 3.8 liters [1 gallon] of the liquid cleaner into the radiator and finish filling the system with tap water. This mixture is satisfactory for a 12 - 14 gallon cooling system. For larger cooling systems, add 3.8 liters [1 gallon] per 57 liters [15 gallons] of system capacity. Do not reinstall the radiator cap. Leaving the cap off facilitates inspection of coolant flow in the radiator along with eliminating the cool-down time required for radiator cap removal.

⚠️ WARNING ⚠️
Do not use liquid dish soap. Foaming and air lock in the cylinder head(s) can occur causing severe engine damage

4. Operate the engine at 1200 to 1500 RPM for 30 minutes with sufficient load to open the thermostat(s) (minimum 85°C [185°F] coolant temp) to produce flow through the radiator and/or heat exchanger(s). Operating the engine without load will prolong the cleaning process. To increase operating temperature and decrease cleaning time, disable the fan drive or cover the radiator core completely. Check for flow through the radiator. Failure to get the cooling system hot enough to fully open the thermostat(s) will leave the radiator core contaminated although the engine side will be clean. Be sure to open and/or set the heater controls in the maximum heating position. If loaded engine operation is not possible, block the thermostat(s) open to produce radiator circulation. If coolant does not become hot enough, adequate cleaning will take much longer and additional flushes can be required.

5. Shut down the engine and drain the cleaning solution quickly by utilizing all of the available drain cocks and/or via the fabricated lower plumbing arrangement. Draining the cleaning solution quickly reduces the chances that oil residue will stick to the cooling system surfaces, which will prolong the flushing process.

6. After the cleaning solution is drained from cooling system, fill the cooling system with plain tap water. Operate engine for 15 minutes at 1200 to 1500 RPM while it is still hot.

7. Drain the tap water from the cooling system. The water will contain cleaner and oil residue and must be disposed of in an approved manner.

8. If the tap water does contain oil residue, the system must be cleaned again. Return to Step 3 above and repeat use of the cleaner until the tap water used to rinse the system has no more oil residue and no oil is observed in the radiator. It may be helpful to inspect the inside of coolant hoses and pipes for evidence of oil adhering to the surfaces.

9. Once the cooling system is thoroughly cleaned, return the system to the original
configuration and install new, fully formulated antifreeze/coolant meeting CES 14603. 
10. If applicable, install a new coolant filter sized appropriately.

Section 12 - Coolant for Arctic Operation

There are many factors, in addition to engine coolant, that need to be considered when operating Cummins engines in arctic climates. These are discussed in Cold Weather Operation, Bulletin 3387266, and Operation of Diesel Engines in Cold Climates, Bulletin 3379009. Operation of Diesel Engines in Cold Climates defines arctic conditions as -32°C to -54°C [-25°F to -65°F]. That bulletin recommends use of a 60 percent EG antifreeze mixture for coolant for arctic specifications. Cold Weather Operation states that the maximum recommended mixture is 68 percent antifreeze (EG).

To update the above recommendations on coolant for arctic operation, a review of the pertinent literature was made and reported recently. The results of the review are:

1. Do not use PG coolant in arctic climates because of its higher viscosity compared to EG coolants.
2. Use EG coolants at 65 percent glycol concentration and stay within the range of 60 to 70 percent glycol.
3. Do not over treat the coolant with supplemental coolant additives (SCA's) beyond 0.8 units per liter [3 units per gallon] due to the limited solubility of additives at these lower than normal temperatures and higher than normal glycol levels.
4. SCA concentration must be maintained between 1.2 and 3 units per gallon.

Section 13 - Recycled Coolants

All documents previously published on recycled coolants are now obsolete. Cummins Inc. requirements for recycled coolant is the same as for new coolants. New and recycled coolant must meet CES 14603. Some recycled products based on distillation, dual deionization, or reverse osmosis/electro-dialysis are capable of meeting CES 14603.

Attachment 1 - Summary of Coolant Additive Technology

Introduction

Antifreeze/coolant concentrate is made up of roughly the following components:

93 to 95 percent ethylene glycol or propylene glycol
2 to 5 percent of an additive package
1 to 3 percent water.

The glycol is present to lower the freeze point and increase the boiling point of the coolant. See Section 7 - Antifreeze, for additional benefits of glycol. The small amount of water is either contained in the additives used or is added to aid the blending of the product. This allows the additive package to better dissolve in the glycol and prevents dropout or precipitation during storage. More detail is given in the following section on the various chemicals and functions of the coolant additive package.

Coolant Additives and their Function

A fully formulated antifreeze/coolant will perform the following functions to prevent corrosion and
maintain efficient heat transfer. See Section 1 - Introduction for a comparison of the functions of light-duty and heavy-duty antifreeze/coolants.

- Buffering
  - Additive or Chemical - Phosphate, Borate, or Salts of Organic Acids
  - Benefit or Effect - Maintain proper pH, Neutralize acidic material that enters coolant
- Corrosion Inhibitor
  - Additive or Chemical - Nitrate, Silicate, MBT, TT, and Organic Acid Salts
  - Benefit or Effect - Prevent corrosion of various cooling system metals
- Liner Pitting Protection/Control
  - Additive or Chemical - Nitrite and Molybdate
  - Benefit or Effect - Especially effective at cast iron cavitation-corrosion protection
- Antifoam
  - Additive or Chemical - Polyglycols and Silicones
  - Benefit or Effect - Prevent the formation of stable foam which can cause heat transfer/corrosion problems
- Scale and Deposit Control
  - Additive or Chemical - Phosphonates and water soluble polymers such as polyacrylates
  - Benefit or Effect - Prevents the buildup of scale or mineral deposits on heat transfer surfaces
- Antifouling
  - Additive or Chemical - Low foaming surfactants/detergents
  - Benefit or Effect - Prevent the buildup of oil & dirt that block heat transfer and promote corrosion.

Supplemental Coolant Additives (SCAs) versus Extended Service Additives (ESAs)

SCA’s have been around in the form of chromate based products since the mid 1950’s. The chromate based SCA’s were largely replaced by borate-nitrite products by the mid-1970’s because of chromate’s toxicity. In the mid-1980’s a phosphate-molybdate based product, DCA4 was made available to improve upon the performance of the borate-nitrite products that then dominated the market. The SCA’s had 3 uses.

1. SCA was used to precharge light-duty antifreeze to make it acceptable for heavy-duty service.
2. SCA was added at 15K to 50K mile service interval to offset both dilution and depletion. Dilution occurred as the system was refilled with light-duty coolant.
3. SCA was used as the total additive package for treated water coolants common in warm climates and marine applications.

In the early-1990’s the heavy-duty coolant market had begun to change. Most fleets no longer drained coolant at the recommended 240K mile, or 6K hour recommendation, but continued to use the same coolant until engine rebuild. Fully formulated heavy-duty coolant became more readily available and this resulted in an increase in the length of service intervals. Coolant additive replenishment was separated from servicing of the lube system and pushed out to once per year, 150K miles, or 4K hours. SCA’s are not formulated for long life, extended service operation. There is too much overlap between the additive package in the long life, heavy-duty coolant and the SCA. Adding SCA to heavy-duty coolant results in excessive levels of additives in the coolant. Over time, this excessive additive build up or high level of dissolved solids (TDS) in the coolant can cause water pump leakage as well as solder and aluminum corrosion.
The first extended service additives, ESA's or "Extenders" became available in the late-1980's and were commonplace by the mid-1990's. An antifreeze Extender is formulated to replace additive at the rate that it is consumed or depleted. This assumes that the cooling system is being topped up with a fully formulated heavy-duty coolant so that there are little or no issues with additive dilution. The composition of an Extender is based upon the depletion rate of the various components. The Extender contains a larger amount of those additives that deplete quickly and smaller amounts of those additives that are consumed at a lower rate over time. For instance, Extender contains twice the amount of nitrite and half as much phosphate as the regular SCA. This is based on the fact that nitrite depletes faster than phosphate. Extenders are formulated to maintain a proper balance of additives in the coolant over time. However, they will not establish the proper initial additive levels, therefore extenders can not be used to formulate treated water coolant.

"OAT" Coolants or "OACs"

OAT is an acronym for organic acid technology, while OAC refers to organic acid coolant. In both cases organic acids make up the large part of the additive package. However, ethylene glycol or propylene glycol still make up 90 to 95 percent of the antifreeze as with conventional antifreeze. For this reason the heat transfer characteristics and the physical properties such as freeze and boil over protection, specific heat, etc. are very similar to other products in the market.

What is an organic acid? First a chemical is classified as organic if it contains the element carbon as part of its structure. Organic acids are just one of the many classes of organic compounds such as alcohols and carbohydrates. Common organic acids are acetic acid, better known as vinegar, and adipic acid, which is the main ingredient in baking powder. In reality it is the sodium or potassium salts of organic acids that are used as corrosion inhibitors and buffers in engine coolants. The same is true for inorganic acids such as nitric and phosphoric that are used in conventional coolants.

The use of organic acids in engine coolants goes back to the early-1950's when benzoic acid was used in hybrid type coolants in Europe. Coolants are classified as "conventional", "hybrid", or "OAT" based largely on how much organic acid is used in the coolant additive package.

1. Conventional - Additive package made up of inorganic type compounds
2. Hybrid - Additive package contains a mixture of inorganic and organic acid components
3. OAT - The additive package consists of 75 to 90 percent organic acids. Also OAT coolants will not contain the buffers borate and phosphate or the aluminum corrosion inhibitor silicate. Cummins heavy duty engines, the ISX, ISM and N14 require the addition of silicates when OAT coolants are used.

Any antifreeze/coolant used in Cummins engines must meet CES 14603, regardless of the additive package composition.

DCA-4 versus Fleetcool (DCA-2)

DCA4 DCA-4 Plus & ES™ Liquid Extenders, as well as ES™ Complex are all based on a phosphate/molybdate/nitrite additive package. These chemicals, along with other additives, provide protection to cooling system components. Many other SCAs or Extenders such as Fleetcool (DCA-2) have a borate-nitrite base and higher levels of silicate. The liner pitting protection of DCA-4 and Fleetcool (DCA-2) is equivalent, however DCA-4 provides the following advantages:
- Reduced risk of water pump leakage due to overtreatment as compared to DCA-2
- DCA-4 is more tolerant of hard make-up water
- DCA-4 less likely to form silicate gel if overtreated
- DCA-4 provides better solder protection, which reduces “bloom” deposits
- DCA-4 provides aluminum protection without high levels of silicate
- DCA-4 contains surfactants that limit or prevent oil and dirt from fouling metal surfaces within the cooling system.

If the pitting protection performance of DCA4 and DCA2 (Fleetcool) are equivalent, then why is DCA4 a preferred chemistry?

- It is preferred because of the added benefits described above, and because the SCA package of DCA4 contains fewer dissolved solids to accomplish equivalent performance. DCA4 depends on the combined effect of nitrites and molybdates, whereas DCA2 (Fleetcool) depends solely on the effect of nitrites. The presence of molybdates enhances the protective qualities of nitrites. However, molybdates alone will not provide adequate protection. Therefore, laboratory test results and test kit charts are specifically designed to warn of insufficient nitrite levels by indicating low SCA levels. On the other hand, the absence of molybdates will not trigger warnings if nitrite levels are sufficient to provide pitting protection. That is why the CC2602 test kit works well with both DCA4 and DCA2 (Fleetcool).

How do SCAs/ESAs protect liners and blocks from pitting damage?

- SCAs/ESAs work by forming a protective coating on liner and block surfaces that are subjected to cavitation. Cavitation is the driving force responsible for pitting damage. It is caused by the collapse of vapor bubbles created during liner movement following combustion. Vapor bubbles are formed anytime the localized pressure of the coolant drops below the vapor pressure of the coolant. Vapor pressure is a physical characteristic of the coolant that is primarily controlled by the antifreeze-to-water ratio and coolant temperature. The localized pressure is a function of many factors, including engine design, load, piston slap, engine timing, and cooling system pressure.

Attachment 2 - Cummins Inc., ASTM, and TMC Specification Summary

There are three ASTM and three TMC specifications which are pertinent.

Antifreeze/Coolant Related Specifications

1. ASTM D6210, Standard Specification for Fully Formulated Ethylene Glycol-Base Engine Coolant for Heavy-Duty Engines

Fully formulated antifreezes meeting the above specifications provide liner-pitting protection and scale inhibition. However, low-silicate antifreezes meeting ASTM D4985 or GM 6038M do not control liner-pitting and scale formation due to the absence of nitrite and scale inhibitors.
SCA for Treated Water Coolant Related Specifications


Copies of these specifications can be purchased from the following:

American Society for Testing and Materials
100 Barr Harbor Drive
West Conshohocken, PA 19428 U.S.A.
Phone: (610) 832-9500
Fax: (610) 832-9555

Technology and Maintenance Council
American Trucking Association
2200 Mill Road
Alexandria, VA 22314-5388 U.S.A.
Phone: (703) 838-1763
Fax: (703) 684-4328

Cummins Inc. Coolant Specification

CES 14603 requires that the antifreeze/coolant meet all requirements of ASTM D6210 for EG coolant or ASTM D6211 for PG coolant. In addition, it must:

1. Meet the modified ASTM D1384, the Glassware Corrosion Test. This test has stricter limits for corrosion weight loss for aluminum and solder. The solder tested shall be the standard 70/30 material and also high lead solder, which is used in many copper/brass radiators for heavy duty engine applications. Tests shall be run at both 70 percent antifreeze and 30 percent antifreeze instead of the standard 33-1/3 percent solution only.
2. Meet the modified ASTM D2570, Simulated Service Corrosion Testing of Engine Coolants. In addition to the standard ASTM test, various rubber seal materials are tested for compatibility with the coolant. In addition, the standard metal corrosion weight loss limits are stricter for aluminum and solder.
3. Meet CES 60049, Coolant/Elastomer seal compatibility.
4. Be field tested in Cummins engines.

For an antifreeze/coolant to be registered as meeting CES 14603, the antifreeze/coolant supplier must have valid test results from competent, independent testing labs as proof of meeting the above specifications.

Cummins Inc. Coolant Filter Specification
CES 14315 is the Cummins Engineering Standard that covers coolant filter performance. The standard contains the tests required to meet Cummins Inc. performance requirements along with the performance limits for those tests. The tests required in this standard cover the following:

Media Soak
Adhesive Durability
Corrosion Flow vs. Restriction
Capacity and Efficiency
Bubble
Gasket Durability
Element Collapse
Hydrostatic Pressure
Impulse Fatigue
Vibration.

Attachment 3 - Monitor C Sample Report

<table>
<thead>
<tr>
<th>Monitor 'C' Coolant Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2700</td>
</tr>
<tr>
<td>Fleetguard, Inc.</td>
</tr>
<tr>
<td>Service Engineering</td>
</tr>
<tr>
<td>P.O. Box 6001</td>
</tr>
<tr>
<td>Cookeville, Tennessee 38502</td>
</tr>
<tr>
<td>(615) 526-9551</td>
</tr>
<tr>
<td>1-800-22-FILTER</td>
</tr>
<tr>
<td>(1-800-223-4583)</td>
</tr>
<tr>
<td>Customer</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Address:</td>
</tr>
<tr>
<td>Unit #34913504</td>
</tr>
<tr>
<td>EOT E</td>
</tr>
<tr>
<td>Date Sampled: 07/12/99</td>
</tr>
<tr>
<td>Date Tested: 08/02/99</td>
</tr>
<tr>
<td>Miles on Unit:</td>
</tr>
<tr>
<td>Miles/Hrs. on Coolant: 129,518</td>
</tr>
<tr>
<td>Lab Sample Number: 406514</td>
</tr>
<tr>
<td>pH: 8.6</td>
</tr>
<tr>
<td>% Glycol: 73*</td>
</tr>
<tr>
<td>Freezing Point: -61°C [-78°F]</td>
</tr>
<tr>
<td>TDS (%): 0.5</td>
</tr>
<tr>
<td>Liner Pitting</td>
</tr>
<tr>
<td>-SCA (Units per Gallon): 0.6*</td>
</tr>
<tr>
<td>-Nitrite (TMC RP 382): 248</td>
</tr>
<tr>
<td>-Molybdate: 265</td>
</tr>
<tr>
<td>(TMC RP328):</td>
</tr>
<tr>
<td>Corrosion Products</td>
</tr>
<tr>
<td>-Iron: 1</td>
</tr>
<tr>
<td>-Aluminum: 0</td>
</tr>
<tr>
<td>-Copper: 4</td>
</tr>
<tr>
<td>-Lead: 0</td>
</tr>
<tr>
<td>Silicate (TMC RP 328): 60</td>
</tr>
<tr>
<td>Buffers</td>
</tr>
<tr>
<td>-Phosphate (K2HPO4): 12733</td>
</tr>
<tr>
<td>-Borate (Na2B4O7): 1429</td>
</tr>
<tr>
<td>-Hardness: 0</td>
</tr>
<tr>
<td>-Chloride: 0</td>
</tr>
<tr>
<td>-Sulfate: 0</td>
</tr>
</tbody>
</table>

NOTE: *Chemical analysis results are PPM except where noted.

!!MONITOR C TESTS ARE NOT SUFFICIENT TO EVALUATE COOLANT RECYCLING PROCESSES!!
RECOMMENDATIONS: SCA IS UNDERCONCENTRATED. GLYCOL CONCENTRATION IS EXCESSIVELY ABOVE RECOMMENDED RANGE FOR ANTIFREEZE. USE 40 TO 60 PERCENT. IF SYSTEM IS OVERHEATING, DRAIN AND FLUSH WITH HEAVY-DUTY CLEANER. REFILL WITH FRESH 50/50 ANTIFREEZE/WATER MIXTURE. CONTACT FLEETGUARD® FOR PROPER SCA DOSAGE. PRECHARGE SYSTEM AT 1.5 UNITS SCA PER GALLON, AND INSTALL A SERVICE FILTER. REFER TO "COOLANT ANALYSIS WITH MAINTENANCE RECOMMENDATIONS" IN THIS SECTION.

I have personally reviewed the data and recommendations for your sample.

Diagnostican)

Attachment 4 - Explanation of Coolant Analysis and Maintenance Recommendations (Monitor C)

- Unit:
  - A measure of liner pitting protection based upon the nitrite and molybdate concentration of the coolant.
- Extender/SCA:
  - At initial fill, top-off and coolant change-out, engine coolant will have a minimum level of liner pitting protection of 0.3 units/liter [1.2 units per gallon] using antifreeze and/or supplemental coolant additives (SCA). Use of fully formulated coolants meeting ASTM or TMC specifications and a correctly-sized service filter will result in a precharge of at least the required minimum 0.4 units/liter [1.5 units per gallon].

⚠️ WARNING ⚠️

Failure to maintain Extender/SCA concentration level can result in severe engine damage.

For additional information, call Fleetguard Service Engineering at 800-223-4583 and follow the menu to get to Technical Assistance.

- Glycol:
  - Engine manufacturers recommend coolants composed of 50/50 water/glycol solutions providing enhanced freeze and boil protection. An operating range of 40 percent to 60 percent antifreeze is acceptable except in Arctic climates where 60 to 70 percent is acceptable. Use of glycol percentages exceeding 70 percent can cause SCA drop out, water pump seal leakage, and engine overheating.
- Water Quality:
  - For water quality specifications recommended by most major engine manufacturers, refer to Section 9. Water exceeding any of the specifications in Section 9 must not be used. Use distilled water, deionized water, or equivalent. Hardness must be determined through testing of make-up water, not by testing used coolant.
- pH:
  - Coolant pH values have a normal range of 8.5 to 10.5 when precharged with nitrite or nitrite/molybdate SCA. If pH falls below 7.5, rapid nitrite depletion can result. This will be shown as low SCA units. Continued additions of SCA into low pH coolant will have little effect on SCA units per gallon. When pH is less than 7.5, coolant must be drained and the cooling system must be flushed. Exceptions to this are hybrid or OAT type coolants that can function properly at pHs below 7.5. Coolant pH exceeding 11 will corrode aluminum and promote scale formation and the cooling system must be
drained and flushed. If no serious problems are encountered, the system can be flushed using tap water. If corrosion, scale, or gelation is present, chemical cleaners such as Restore™ or Restore Plus™ must be used.

- TDS:
  - Total Dissolved Solids are composed of the basic inhibitor chemicals, silicates, active SCAs, spent SCAs, contaminants, and water hardness compounds. Water pump seals will tolerate gradual buildup of TDS until a 5 percent level is achieved. If water pump seal leakage occurs, the coolant must be tested for Total Dissolved Solids. If the TDS level is above the acceptable limit, the coolant must be drained and replaced.

- Silicates:
  - Silicates protect several cooling system metal surfaces. Automotive antifreeze typically contains large amounts of silicate. Use of automotive antifreeze and Extender/SCA leads to additive dropout which causes plugging of radiators, heater cores, and restricts engine coolant passages. Sudden introduction of large amounts of silicate through additions of automotive antifreeze or large doses of nitrite/borate SCA (high silicates) can cause rapid failure of water pump seals. Reports of low silicates and low water hardness in used coolants can be misleading. Both silicates and hardness compounds will precipitate out in the presence of each other. For an accurate evaluation of silicate levels, new undiluted antifreeze must be tested.

- Buffering Agents:
  - The function of phosphate and borate buffers is to counter acid formation. Acids are the product of thermal degradation of antifreeze. Without adequate buffers, corrosion and rapid additive depletion will occur due to reduction in pH values. The result will be cylinder liner pitting due to rapid nitrite depletion.

- Corrosion Products: Typical sources for corrosion products are:
  - IRON: liners, water pump, cylinder block, cylinder head
  - ALUMINUM: radiator tanks, radiator cores, heater cores, coolant elbows, piping, spacer plates, thermostat housings
  - COPPER: radiator core, heater core, oil cooler, aftercooler (intercooler), injector sleeves
  - LEAD: radiator solder, heater core solder, aftercooler core solder.

Attachment 5 - Benefits of Coolant Filtration

Not all heavy-duty engine OEMs require the use of coolant filters on their engines. However, Cummins Inc. experience is that use of coolant filters reduces the total cost of engine usage. After a comprehensive review of coolant filtration in 1988, Cummins Inc. ¹ concluded the following:

1. Coolant is dirty. About 40 percent of the coolant filters taken at random from heavy-duty units in the field had a significant amount of contaminant. This agrees well with a Union Carbide study of several thousand automobile cooling systems where at least 40 percent of the coolant samples contained heavy sediment.

2. The coolant filter is a good chemical maintenance tool. It is the most reliable way to get the needed amount of Extender/SCA into the antifreeze/coolant. This reduces the chance that the coolant will be either under or over treated. The filter serves as a visible reminder that the cooling system requires periodic maintenance.

3. The coolant filter is a troubleshooting tool. Opening a used coolant filter and observing what has collected on the filter media is very useful in the diagnosis of engine problems.

4. There is a direct benefit of filtering the contaminant out of coolant as it reduces wear,
corrosion, cavitation-corrosion (pitting), plugging, and maintains effective heat transfer. This is of benefit to cylinder liners, cylinder liner seals, water pump seals, water pump impellers, thermostats, heat exchangers, and other cooling system components. Filtration of coolant is critical when using extended service intervals.

5. Coolant filtration will become even more important as margin is taken out of the cooling system to reduce cost, size, and weight while the trade cycle for vehicles in many fleets is pushed to higher mileages.

6. Since we are trying to cool more engine with a downsized cooling system, cooling system cleanliness is an increasingly important issue. More emphasis needs to be placed on effective coolant filtration that will help maintain peak system efficiency.

In early 2002, a study was made to determine whether coolant filtration is still beneficial and necessary for Cummins engines. This study looked at changes in coolants, engines, and coolant maintenance practices since 1988 to determine if the need for coolant filtration had increased or decreased since 1988. Also, additional technical data on coolants and filtration, not included in the 1988 study, was reviewed to determine if it supports the practice of coolant filtration. This updated study on coolant filtration concluded:

1. Cooling system and coolant changes that have occurred since the 1988 study show an increased need for coolant filtration.

2. Additional technical literature and data not available or not referenced in the 1988 study show improved cooling system performance due to coolant filtration.

It is apparent that coolant filtration continues to be an advantage to Cummins Inc. and Cummins Inc. customers and; therefore, it is mandatory on linered engines.


Last Modified: 03-Dec-2002

Copyright© 2002
Cummins, Inc.
All rights reserved
Cummins Position on TELC

06Aug1999

North American Customer Bulletin

This communication is being sent to update mutual customers of Cummins Engine Company and Equilon Lubricants on the issue of gasket coolant leakage in Cummins engines, when factory filled with Texaco Extended Life Coolant (TELC).

Cummins Engine Company, Texaco and Equilon Lubricants are working together to find a solution. The teams have already ascertained that the addition of silicates to cooling systems has shown improved performance between TELC and silicone seals in Cummins engines, and support the following customer options:

1. Add concentrated silicates to Cummins cooling systems that contain TELC.

OR

2. Install a coolant filter that contains silicates.

Option 1: Concentrated silicates will be available free of charge from Equilon Lubricants in early September 1999. Special order instructions will be forthcoming, along with installation procedures, to insure that the concentration of silicates in the cooling system is appropriate for gasket performance improvement.

OR

Option 2: Information on this option will be available by September 1999. At this time we do not have a specific filter that can be recommended, however Equilon is working with multiple filter manufacturers.

⚠ CAUTION ⚠
Over-treatment of silicates in the cooling system can be damaging to other components. Texaco/Equilon Lubricants does **not** recommend the addition of silicates to engines produced by other manufacturers.

Cummins Engine Company, Texaco and Equilon Lubricants have formed a common task force that are working together on short-term and long-term solutions to these issues. Texaco and Equilon Lubricants support Cummins Engine Company

---

**Copyright** © 1999
Cummins Engine Company, Inc.
All rights reserved
Cooling System

Organic acid inhibited precharged coolants are being offered today as factory fill options. Several OEMs are not offering the option of customer selection of coolant so many customers will receive their new trucks with Texaco coolant (red in color) and they wish to convert back to their present coolant choice. The process is quite straightforward and they should not drain the cooling system, simply follow the procedure listed below.

Converting from organic acid coolant to Fleetguard® COMPLEAT EG (Ethylene Glycol) or PG (Propylene Glycol) premixed coolant.

To convert a system that contains organic acid coolant, simply add two pints of DCA4 liquid to the cooling system (up to 15 gallons). Install a DCA4 service water filter that is required for the intended service interval. Top off the system with COMPLEAT Coolant 50/50 premix and change the water filter at normal PM intervals. Adding the DCA4 conversion dose adds buffers and silicates for enhanced protection of aluminum and additional control of degradation acids that build up in coolants. The conversion dose will not cause chemical dropout, solder corrosion, or effect water pump seals. The system should be maintained as we state in our O&M Manuals by checking with our test strips for nitrite and molybdate and freeze point at least each six months.

Converting from organic acid coolant to Fleetguard® ES coolant, EG or PG.

To convert a system that contains organic acid coolant, simply add two pints of DCA4 liquid to the cooling system (up to 15 gallons). Install an FS 2121 ES Slow Release water filter. Top off the cooling system with ES Coolant 50/50 premix and inspect and test twice a year for nitrite and molybdate levels and freeze point using our test strips. Change the WF2121 filter at one year or 50,000 miles, whichever comes first. The conversion dose of DCA4 adds buffers and silicates for enhanced protection of aluminum and additional control of degradation acids that build up in coolants. The conversion dose will not cause chemical dropout, solder corrosion, or effect water pump seals.