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Preface

The advance of scientific thought in ways resembles biological and geologic
transformation: long periods of gradual change punctuated by episodes of radical
upheaval. Twentieth century physics witnessed at least three major shifts —
relativity, quantum mechanics and chaos theory — as well many lesser ones. Now,
early in the 21°¢, another shift appears imminent, this one involving the second
law of thermodynamics.

Over the last 20 years the absolute status of the second law has come under
increased scrutiny, more than during any other period its 180-year history. Since
the early 1980’s, roughly 50 papers representing over 20 challenges have appeared
in the refereed scientific literature. In July 2002, the first conference on its status
was convened at the University of San Diego, attended by 120 researchers from
25 countries (QLSL2002) [1]. In 2003, the second edition of Leff’s and Rex’s
classic anthology on Maxwell demons appeared [2], further raising interest in this
emerging field. In 2004, the mainstream scientific journal Entropy published a
special edition devoted to second law challenges [3]. And, in July 2004, an echo of
QLSL2002 was held in Prague, Czech Republic [4].

Modern second law challenges began in the early 1980’s with the theoretical
proposals of Gordon and Denur. Starting in the mid-1990’s, several proposals
for experimentally testable challenges were advanced by Sheehan, et al. By the
late 1990’s and early 2000’s, a rapid succession of theoretical quantum mechanical
challenges were being advanced by Cépek, et al., Allahverdyan, Nieuwenhuizen,
et al., classical challenges by Liboff, Crosignani and Di Porto, as well as more
experimentally-based proposals by Nikulov, Keefe, Trupp, Graff, and others.

The breadth and depth of recent challenges are remarkable. They span three
orders of magnitude in temperature, twelve orders of magnitude in size; they
are manifest in condensed matter, plasma, gravitational, chemical, and biological
physics; they cross classical and quantum mechanical boundaries. Several have
strong corroborative experimental support and laboratory tests attempting bona
fide violation are on the horizon. Considered en masse, the second law’s absolute
status can no longer be taken for granted, nor can challenges to it be casually
dismissed.

This monograph is the first to examine modern challenges to the second law.
For more than a century this field has lain fallow and beyond the pale of legitimate
scientific inquiry due both to a dearth of scientific results and to a surfeit of
peer pressure against such inquiry. It is remarkable that 20" century physics,
which embraced several radical paradigm shifts, was unwilling to wrestle with this
remnant of 19*” century physics, whose foundations were admittedly suspect and
largely unmodified by the discoveries of the succeeding century. This failure is
due in part to the many strong imprimaturs placed on it by prominent scientists
like Planck, Eddington, and Einstein. There grew around the second law a nearly
inpenetrable mystique which only now is being pierced.

The second law has no general theoretical proof and, like all physical laws, its
status is tied ultimately to experiment. Although many theoretical challenges to it
have been advanced and several corroborative experiments have been conducted,
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no experimental violation has been claimed and confirmed. In this volume we
will attempt to remain clear on this point; that is, while the second law might be
potentially violable, it has not been violated in practice. This being the case, it is
our position that the second law should be considered absolute unless experiment
demonstrates otherwise. It is also our position, however, given the strong evidence
for its potential violability, that inquiry into its status should not be stifled by
certain unscientific attitudes and practices that have operated thus far.

This volume should be of interest to researchers in any field to which the sec-
ond law pertains, especially to physicists, chemists and engineers involved with
thermodynamics and statistical physics. Individual chapters should be valuable
to more select readers. Chapters 1-2, which give an overview of entropy, the sec-
ond law, early challenges, and classical arguments for second law inviolability,
should interest historians and philosophers of science. Chapter 3, which devel-
ops quantum mechanical formalism, should interest theorists in quantum statisti-
cal mechanics, decoherence, and entanglement. Chapters 4-9 unpack individual,
experimentally-testable challenges and can be profitably read by researchers in the
various subfields in which they arise, e.g., solid state, plasma, superconductivity,
biochemistry. The final chapter explores two topics at the forefront of second law
research: thermosynthetic life and physical eschatology. The former is a proposed
third branch of life — beyond the traditional two (chemosynthetic and photosyn-
thetic) — and is relevant to evolutionary and extremophile biology, biochemistry,
and origin-of-life studies. The latter topic explores the fate of life in the cosmos
in light of the second law and its possible violation. Roughly 80% of this volume
covers research currently in the literature, rearranged and interpreted; the remain-
ing 20% represents new, unpublished work. Chapter 3 was written exclusively by
Capek (with editing by d.p.s.), Chapters 4-10 exclusively by Sheehan, Chapter 1
primarily by Sheehan, and Chapter 2 jointly. As much as possible, each chapter is
self-contained and understandable without significant reference to other chapters.
Whenever possible, the mathematical notation is identical to that employed in the
original research.

It is likely that many of the challenges in this book will fall short of their marks,
but such is the nature of exploratory research, particularly when the quarry is as
formidable as the second law. It has 180 years of historical inertia behind it and
the adamantine support of the scientific community. It has been confirmed by
countless experiments and has survived scores of challenges unscathed. Arguably,
it is the best tested, most central and profound physical principle crosscutting
the sciences, engineering, and humanities. For good reasons, its absolute status is
unquestioned.

However, as the second law itself teaches: Things change.

Daniel P. Sheehan
San Diego, California
August 4, 2004
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Entropy and the Second Law

Various formulations of the second law and entropy are reviewed. Longstand-
ing foundational issues concerned with their definition, physical applicability and
meaning are discussed.

1.1 Early Thermodynamics

The origins of thermodynamic thought are lost in the furnace of time. However,
they are written into flesh and bone. To some degree, all creatures have an innate
‘understanding’ of thermodynamics — as well they should since they are bound
by it. Organisms that display thermotaxis, for example, have a somatic familiarity
with thermometry: zeroth law. Trees grow tall to dominate solar energy reserves:
first law. Animals move with a high degree of energy efficiency because it is
‘understood’ at an evolutionary level that energy wasted cannot be recovered:
second law. Nature culls the inefficient.

Human history and civilization have been indelibly shaped by thermodynamics.
Survival and success depended on such things as choosing the warmest cave for
winter and the coolest for summer, tailoring the most thermally insulating furs,
rationing food, greasing wheels against friction, finding a southern exposure for a
home (in the northern hemisphere), tidying up occasionally to resist the tendencies
of entropy. Human existence and civilization have always depended implicitly on
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an understanding of thermodynamics, but it has only been in the last 150 years
that this understanding has been codified. Even today it is not complete.

Were one to be definite, the first modern strides in thermodynamics began
perhaps with James Watt’s (1736-1819) steam engine, which gave impetus to what
we now know as the Carnot cycle. In 1824 Sadi Nicolas Carnot (1796-1832),
published his only scientific work, a treatise on the theory of heat (Réflexions sur
la Puissance Motice du Feu) [1]. At the time, it was not realized that a portion of
the heat used to drive steam engines was converted into work. This contributed
to the initial disinterest in Carnot’s research.

Carnot turned his attention to the connection between heat and work, abandon-
ing his previous opinion about heat as a fluidum, and almost surmised correctly
the mechanical equivalent of heat!. In 1846, James Prescott Joule (1818-1889)
published a paper on thermal and chemical effects of the electric current and in
another (1849) he reported mechanical equivalent of heat, thus erasing the sharp
boundary between mechanical and thermal energies. There were also others who,
independently of Joule, contributed to this change of thinking, notably Hermann
von Helmholtz (1821-1894).

Much of the groundwork for these discoveries was laid by Benjamin Thompson
(Count of Rumford 1753-1814). In 1798, he took part in boring artillery gun
barrels. Having ordered the use of blunt borers — driven by draught horses — he
noticed that substantial heat was evolved, in fact, in quantities sufficient to boil
appreciable quantities of water. At roughly the same time, Sir Humphry Davy
(1778-1829) observed that heat developed upon rubbing two pieces of metal or
ice, even under vacuum conditions. These observations strongly contradicted the
older fluid theories of heat.

The law of energy conservation as we now know it in thermodynamics is usually
ascribed to Julius Robert von Mayer (1814-1878). In classical mechanics, however,
this law was known intuitively at least as far back as Galileo Galilei (1564-1642).
In fact, about a dozen scientists could legitimately lay claim to discovering energy
conservation. Fuller accounts can be found in books by Brush [2] and von Baeyer
[3]. The early belief in energy conservation was so strong that, since 1775, the
French Academy has forbidden consideration of any process or apparatus that
purports to produce energy ex nihilo: a perpetuum mobile of the first kind.

With acceptance of energy conservation, one arrives at the first law of ther-
modynamics. Rudolph Clausius (1822-1888) summarized it in 1850 thus: “In any
process, energy may be changed from one to another form (including heat and
work), but can never be produced or annihilated.” With this law, any possibility
of realizing a perpetuum mobile of the first kind becomes illusory.

Clausius’ formulation still stands in good stead over 150 years later, despite
unanticipated discoveries of new forms of energy — e.g., nuclear energy, rest mass
energy, vacuum energy, dark energy. Because the definition of energy is malleable,
in a practical sense, the first law probably need not ever be violated because, were
one to propose a violation, energy could be redefined so as to correct it. Thus,
conservation of energy is reduced to a tautology and the first law to a powerfully
convenient accounting tool for the two general forms of energy: heat and work.

LUnfortunately, this tract was not published, but was found in his inheritance in 1878.
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In equilibrium thermodynamics, the first law is written in terms of an additive
state function, the internal energy U, whose exact differential dU fulfills

dU = 5Q + W, (1.1)

Here 6QQ and 6W are the inexact differentials of heat and work added to the
system. (In nonequilibrium thermodynamics, there are problems with introducing
these quantities rigorously.) As inexact differentials, the integrals of 6Q) and §W
are path dependent, while dU, an exact differential is path independent; thus,
U is a state function. Other state functions include enthalpy, Gibbs free energy,
Helmholtz free energy and, of course, entropy.

1.2 The Second Law: Twenty-One Formulations

The second law of thermodynamics was first enunciated by Clausius (1850) [4]
and Kelvin (1851) [5], largely based on the work of Carnot 25 years earlier [1].
Once established, it settled in and multiplied wantonly; the second law has more
common formulations than any other physical law. Most make use of one or more
of the following terms — entropy, heat, work, temperature, equilibrium, perpetuum
mobile — but none employs all, and some employ none. Not all formulations are
equivalent, such that to satisfy one is not necessarily to satisfy another. Some
versions overlap, while others appear to be entirely distinct laws. Perhaps this is
what inspired Truesdell to write, “Every physicist knows exactly what the first
and second laws mean, but it is my experience that no two physicists agree on
them.”

Despite — or perhaps because of — its fundamental importance, no single
formulation has risen to dominance. This is a reflection of its many facets and
applications, its protean nature, its colorful and confused history, but also its
many unresolved foundational issues. There are several fine accounts of its his-
tory [2, 3, 6, 7]; here we will give only a sketch to bridge the many versions we
introduce. Formulations can be catagorized roughly into five catagories, depend-
ing on whether they involve: 1) device and process impossibilities; 2) engines; 3)
equilibrium; 4) entropy; or 5) mathematical sets and spaces. We will now consider
twenty-one standard (and non-standard) formulations of the second law. This sur-
vey is by no means exhaustive.

The first explicit and most widely cited form is due to Kelvin? [5, 8.
(1) Kelvin-Planck No device, operating in a cycle, can produce the

sole effect of extraction a quantity of heat from a heat reservoir and
the performance of an equal quantity of work.

2William Thomson (1824-1907) was known from 1866-92 as Sir William Thomson and after
1892 as Lord Kelvin of Largs.
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In this, its most primordial form, the second law is an injunction against perpetuum
mobile of the second type (PM2). Such a device would transform heat from a heat
bath into useful work, in principle, indefinitely. It formalizes the reasoning under-
girding Carnot’s theorem, proposed over 25 years earlier.

The second most cited version, and perhaps the most natural and experientially
obvious, is due to Clausius (1854) [4]:

(2) Clausius-Heat No process is possible for which the sole effect is
that heat flows from a reservoir at a given temperature to a reservoir
at higher temperature.

In the vernacular: Heat flows from hot to cold. In contradistinction to some formu-
lations that follow, these two statements make claims about strictly nonequilibrium
systems; as such, they cannot be considered equivalent to later equilibrium for-
mulations. Also, both versions turn on the key term, sole effect, which specifies
that the heat flow must not be aided by external agents or processes. Thus, for
example, heat pumps and refrigerators, which do transfer heat from a cold reser-
voir to a hot reservoir, do so without violating the second law since they require
work input from an external source that inevitably satisfies the law.

Other common (and equivalent) statements to these two include:

(3) Perpetual Motion Perpetuum mobile of the second type are im-
possible.

and
(4) Refrigerators Perfectly efficient refrigerators are impossible.

The primary result of Carnot’s work and the root of many second law formu-
lations is Carnot’s theorem [1]:

(5) Carnot theorem All Carnot engines operating between the same
two temperatures have the same efficiency.

Carnot’s theorem is occasionally but not widely cited as the second law. Usually it
is deduced from the Kelvin-Planck or Clausius statements. Analysis of the Carnot
cycle shows that a portion of the heat flowing through a heat engine must always
be lost as waste heat, not to contribute to the overall useful heat output®. The
maximum efficiency of heat engines is given by the Carnot efficiency: n =1 — %—:7
where T j, are the temperatures of the colder and hotter heat reservoirs between
which the heat engine operates. Since absolute zero (T, = 0) is unattainable (by
one version of the third law) and since T}, # oo for any realistic system, the Carnot
efficiency forbids perfect conversion of heat into work (i.e., n = 1). Equivalent

second law formulations embody this observation:

30ne could say that the second law is Nature’s tax on the first.
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(6) Efficiency All Carnot engines have efficiencies satisfying:
0<n<l.

and,

(7) Heat Engines Perfectly efficient heat engines (n = 1) are impos-
sible.

The efficiency form is not cited in textbooks, but is suggested as valid by Koenig
[9]. There is disagreement over whether Carnot should be credited with the dis-
covery of the second law [10]. Certainly, he did not enunciate it explicitly, but he
seems to have understood it in spirit and his work was surely a catalyst for later,
explicit statements of it.

Throughout this discussion it is presumed that realizable heat engines must
operate between two reservoirs at different temperatures. (7. and T}). This con-
dition is considered so stringent that it is often invoked as a litmus test for second
law violators; that is, if a heat engine purports to operate at a single temperature,
it violates the second law. Of course, mathematically this is no more than assert-
ing n = 1, which is already forbidden.

Since thermodynamics was initially motivated by the exigencies of the indus-
trial revolution, it is unsurprising that many of its formulations involve engines
and cycles.

(8) Cycle Theorem Any physically allowed heat engine, when oper-
ated in a cycle, satisfies the condition

f% =0 (1.2)

%(%Q <0 (1.3)

if the cycle is reversible; and

if the cycle is irreversible.

Again, 6Q is the inexact differential of heat. This theorem is widely cited in the
thermodynamic literature, but is infrequently forwarded as a statement of the sec-
ond law. In discrete summation form for reversible cycles (>, Q;/T; = 0), it was
proposed early on by Kelvin [5] as a statement of the second law.

(9) Irreversibility All natural processes are irreversible.

Irreversibility is an essential feature of natural processes and it is the essential
thermodynamic characteristic defining the direction of time* — e.g., omelettes do

41t is often said that irreversibility gives direction to time’s arrow. Perhaps one should say
irreversibility s time’s arrow [11-17].
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not spontaneously unscramble; redwood trees do not ‘ungrow’; broken Ming vases
do not reassemble; the dead to not come back to life. An irreversible process is,
by definition, not quasi-static (reversible); it cannot be undone without additional
irreversible changes to the universe. Irreversibility is so undeniably observed as an
essential behavior of the physical world that it is put forward by numerous authors
in second law statements.

In many thermodynamic texts, natural and irreversible are equated, in which
case this formulation is tautological; however, as a reminder of the essential con-
tent of the law, it is unsurpassed. In fact, it is so deeply understood by most
scientists as to be superfluous.

A related formulation, advanced by Koenig [9] reads:

(10) Reversibility All normal quasi-static processes are reversible,
and conversely.

Koenig claims, “this statement goes further than [the irreversibility statement]
in that it supplies a necessary and sufficient condition for reversibility (and irre-
versibility).” This may be true, but it is also sufficiently obtuse to be forgettable;
it does not appear in the literature beyond Koenig.

Koenig also offers the following orphan version [9]:

(11) Free Expansion Adiabatic free expansion of a perfect gas is an
irreversible process.

He demonstrates that, within his thermodynamic framework, this proposition is
equivalent to the statement, “If a [PM2] is possible, then free expansion of a gas
is a reversible process; and conversely.” Of course, since adiabatic free expansion
is irreversible, it follows perpetuum mobile are logically impossible — a standard
statement of the second law. By posing the second law in terms of a particu-
lar physical process (adiabatic expansion), the door is opened to use any natural
(irreversible) process as the basis of a second law statement. It also serves as a
reminder that the second law is not only of the world and in the world, but, in an
operational sense, it is the world. This formulation also does not enjoy citation
outside Koenig [9].

A relatively recent statement is proposed by Macdonald [18]. Consider a system
Z, which is closed with respect to material transfers, but to which heat and work
can be added or subtracted so as to change its state from A to B by an arbitrary
process P that is not necessarily quasi-static. Heat (Hp) is added by a standard
heat source, taken by Macdonald to be a reservoir of water at its triple point. The
second law is stated:

(12) Macdonald [18] It is impossible to transfer an arbitrarily large
amount of heat from a standard heat source with processes terminating
at a fixed state of Z. In other words, for every state B of Z,
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Sup[Hp : P terminates at B] < oo,

where Sup|...] is the supremum of heat for the process P.

Absolute entropy is defined easily from here as the supremum of the heat Hp
divided by a fiduciary temperature T,, here taken to be the triple point of water
(273.16 K); that is, S(B) = Sup[Hp/T, : P terminates at B]. Like most formu-
lations of entropy and the second law, these apply strictly to closed equilibrium
systems.

Many researchers take equilibrium as the sine qua non for the second law.

(13) Equilibrium The macroscopic properties of an isolated nonstatic
system eventually assume static values.

Note that here, as with many equivalent versions, the term equilibrium is purpose-
fully avoided. A related statement is given by Gyftopolous and Beretta [19]:

(14) Gyftopolous and Beretta Among all the states of a system
with given values of energy, the amounts of constituents and the pa-
rameters, there is one and only one stable equilibrium state. Moreover,
starting from any state of a system it is always possible to reach a
stable equilibrium state with arbitrary specified values of amounts of
constituents and parameters by means of a reversible weight process.

(Details of nomenclature (e.g., weight process) can be found in §1.3.) Several
aspects of these two equilibrium statements merit unpacking.

e Macroscopic properties (e.g., temperature, number density, pressure) are
ones that exhibit statistically smooth behavior at equilibrium. Scale lengths
are critical; for example, one expects macroscopic properties for typical lig-
uids at scale lengths greater than about 107%m. At shorter scale lengths
statistical fluctuations become important and can undermine the second law.
This was understood as far back as Maxwell [20, 21, 22, 23].

e There are no truly isolated systems in nature; all are connected by long-range
gravitational and perhaps electromagnetic forces; all are likely affected by
other uncontrollable interactions, such as by neutrinos, dark matter, dark en-
ergy and perhaps local cosmological expansion; and all are inevitably coupled
thermally to their surroundings to some degree. Straightforward calculations
show, for instance, that the gravitational influence of a minor asteroid in the
Asteroid Belt is sufficient to instigate chaotic trajectories of molecules in a
parcel of air on Earth in less than a microsecond. Since gravity cannot be
screened, the exact molecular dynamics of all realistic systems are constantly
affected in essentially unknown and uncontrollable ways. Unless one is able
to model the entire universe, one probably cannot exactly model any subset
of it5. Fortunately, statistical arguments (e.g., molecular chaos, ergodicity)
allow thermodynamics to proceed quite well in most cases.

5Quantum mechanical entanglement, of course, further complicates this task.
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e One can distinguish between stable and unstable static (or equilibrium) states,
depending on whether they “persist over time intervals significant for some
particular purpose in hand.” [9]. For instance, to say “Diamonds are for-
ever.” is to assume much. Diamond is a metastable state of carbon un-
der everyday conditions; at elevated temperatures (~ 2000 K), it reverts to
graphite. In a large enough vacuum, graphite will evaporate into a vapor of
carbon atoms and they, in turn, will thermally ionize into a plasma of elec-
trons and ions. After 1032 years, the protons might decay, leaving a tenuous
soup of electrons, positrons, photons, and neutrinos. Which of these is a
stable equilibrium? None or each, depending on the time scale and environ-
ment of interest. By definition, a stable static state is one that can change
only if its surroundings change, but still, time is a consideration. To a large
degree, equilibrium is a matter of taste, time, and convenience.

e Gyftopoulos and Beretta emphasise one and only one stable equilibrium
state. This is echoed by others, notably by Mackey who reserves this caveat
for his strong form of the second law [24].

Thus far, entropy has not entered into any of these second law formulations.
Although, in everyday scientific discourse the two are inextricably linked, this is
clearly not the case. Entropy was defined by Clausius in 1865, nearly 15 years
after the first round of explicit second law formulations. Since entropy was origi-
nally wrought in terms of heat and temperature, this allows one to recast earlier
formulations easily. Naturally, the first comes from Clausius:

(15) Clausius-Entropy [4, 6] For an adiabatically isolated system
that undergoes a change from one equilibrium state to another, if the
thermodynamic process is reversible, then the entropy change is zero; if
the process is irreversible, the entropy change is positive. Respectively,

this is: ;
0Q
/i T = Sy —5; (1.4)
and ;
0Q
/i a <8y —=5; (1.5)

Planck (1858-1947), a disciple of Clausius, refines this into what he describes
as “the most general expression of the second law of thermodynamics.” [8, 6]

(16) Planck Every physical or chemical process occurring in nature
proceeds in such a way that the sum of the entropies of all bodies which
participate in any way in the process is increased. In the limiting case,
for reversible processes, the sum remains unchanged.

Alongside the Kelvin-Planck version, these two statements have dominated the
scientific landscape for nearly a century and a half. Planck’s formulation implic-
itly cuts the original ties between entropy and heat, thereby opening the door for
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other versions of entropy to be used. It is noteworthy that, in commenting on the
possible limitations of his formulation, Planck explicitly mentions the perpetuum
mobile. Evidently, even as thermodynamics begins to mature, the specter of the
perpetuum mobile lurks in the background.

Gibbs takes a different tack to the second law by avoiding thermodynamic
processes, and instead conjoins entropy with equilibrium [25, 6]:

(17) Gibbs For the equilibrium of an isolated system, it is necessary
and sufficient that in all possible variations of the state of the system
which do not alter its energy, the variation of its entropy shall either
vanish or be negative.

In other words, thermodynamic equilibrium for an isolated system is the state of
maximum entropy. Although Gibbs does not refer to this as a statement of the
second law, per se, this maximum entropy principle conveys its essential content.
The maximum entropy principle [26] has been broadly applied in the sciences, en-
gineering economics, information theory — wherever the second law is germane,
and even beyond. It has been used to reformulate classical and quantum sta-
tistical mechanics [26, 27]. For instance, starting from it one can derive on the
back of an envelope the continuous or discrete Maxwell-Boltzmann distributions,
the Planck blackbody radiation formula (and, with suitable approximations, the
Rayleigh-Jeans and Wien radiation laws) [24].

Some recent authors have adopted more definitional entropy-based versions [9]:

(18) Entropy Properties Every thermodynamic system has two
properties (and perhaps others): an intensive one, absolute temper-
ature T', that may vary spatially and temporally in the system T'(x,t);
and an extensive one, entropy S. Together they satisfy the following
three conditions:

(i) The entropy change dS during time interval dt¢ is the sum of: (a)
entropy flow through the boundary of the system d..S; and (b) entropy
production within the system, d;S; that is, dS = d.S + d;S.

(ii) Heat flux (not matter flux) through a boundary at uniform tem-
perature T results in entropy change d.S = JTQ.

(iii) For reversible processes within the system, d;S = 0, while for
irreversible processes, d;S > 0.

This version is a starting point for some approaches to irreversible thermodynam-
ics.

While there is no agreement in the scientific community about how best to state
the second law, there is general agreement that the current melange of statements,
taken en masse, pretty well covers it. This, of course, gives fits to mathematicians,
who insist on precision and parsimony. Truesdell [28, 6] leads the charge:
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Clausius’ verbal statement of the second law makes no sense.... All that
remains is a Mosaic prohibition; a century of philosophers and journal-
ists have acclaimed this commandment; a century of mathematicians
have shuddered and averted their eyes from the unclean.

Arnold broadens this assessment [29, 6]:

Every mathematician knows it is impossible to understand an elemen-
tary course in thermodynamics.

In fact, mathematicians have labored to drain this “dismal swamp of obscurity”
(28], beginning with Carathéodory [30] and culminating with the recent tour de
force by Lieb and Yngvason [31]. While both are exemplars of mathematical rigor
and logic, both suffer from incomplete generality and questionable applicability to
realistic physical systems; in other words, there are doubts about their empirical
content.

Carathéodory was the first to apply mathematical rigor to thermodynamics
[30]. He imagines a state space I' of all possible equilibrium states of a generic
system. I is an n-dimensional manifold with continuous variables and Euclidean
topology. Given two arbitrary states s and ¢, if s can be transformed into ¢ by
an adiabatic process, then they satisfy adiabatically accessibility condition, written
s < t, and read s precedes t. This is similar to Lieb and Yngvason [31], except
that Lieb and Yngvason allow sets of possibly disjoint ordered states, whereas
Carathéodory assumes continuous state space and variables. Max Born’s simplified
version of Carathéodory’s second law reads [32]:

(19a) Carathéodory (Born Version): In every neighborhood of
each state (s) there are states (t) that are inaccessible by means of
adiabatic changes of state. Symbolically, this is:

(Vs € I,VUs) : 3t € Ugs K t, (1.6)

where U and U; are open neighborhoods surrounding the states s and t.
Carathéodory’s originally published version is more precise [30, 6].

(19b) Carathéodory Principle In every open neighborhood Us C T'
of an arbitrarily chosen state s there are states ¢t such that for some
open neighborhood U; of t: all states r within U; cannot be reached
adiabatically from s. Symbolically this is:

Vs € TVU,3t € U&IU, CUNr €Uy 1 s 47 (1.7)

Lieb and Yngvason [31] proceed along similar lines, but work with an set of
distinct states, rather than a continuous space of them. For them, the second law
is a theorem arising out of the ordering of the states via adiabatic accessibility.
Details can be found in §1.3.
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In connection with analytical microscopic formulations of the second law, the
recent work by Allahverdyan and Nieuwenhuizen [33] is noteworthy. They rederive
and extend the results of Pusz, Woronowicz [34] and Lenard [35], and provide an
analytical proof of the following equilibrium formulation of the Thomson (Kelvin)
statement:

(20) Thomson (Equilibrium) No work can be extracted from a
closed equilibrium system during a cyclic variation of a parameter by
an external source.

The Allahverdyan-Niewenhuizen (A-N) theorem is proved by rigorous quantum
mechanical methods without invoking the time-invariance principle. This makes
it superior to previous treatments of the problem. Although significant, it is insuf-
ficient to resolve most types of second law challenges, for multiple reasons. First,
the A-N theorem applies to equilibrium systems only, whereas the original forms
of the second law (Kelvin and Clausius) are strictly nonequilibrium in character
and most second law challenges are inherently nonequilibrium in character; thus,
the pertinence of the A-N theorem is limited. Second, it assumes that the system
considered is isolated, but realistically, no such system exists in Nature. Third,
it assumes the Gibbs form of the initial density matrix. While this assumption
is natural when temperature is well defined, once finite coupling of the system to
a bath is introduced, this assumption can be violated appreciably, especially for
systems which purport second law violation (e.g., [36]).

The relationships between these various second law formulations are complex,
tangled and perhaps impossible to delineate completely, especially given the muzzi-
ness with which many of them and their underlying assumptions and definitions
are stated. Still, attempts have been made along these lines [2, 6, 7, 9] 6. This
exercise of tracing the connections between the various formulations has historical,
philosophical and scientific value; hopefully, it will help render a more inclusive
formulation of the second law in the future.

In addition to academic formulations there are also many folksy aphorisms that
capture aspects of the law. Many are catchphrases for more formal statements.
Although loathe to admit it, most of these are used as primary rules of thumb by
working scientists. Most are anonymous; when possible, we try to identify them
with academic forms. Among these are:

e Disorder tends to increase.  (Clausius, Planck)
e Heat goes from hot to cold.  (Clausius)
e There are no perfect heat engines.  (Carnot)

e There are no perfect refrigerators.  ( Clausius)

e Murphy’s Law (and corollary)  (Murphy ~ 1947)

6See, Table I in Uffink [6] and Table II (Appendix A) in Koenig [9]
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1. If anything can go wrong it will.

2. Situations tend to progress from bad to worse.

e A mess expands to fill the space available.

The only way to deal with a can of worms is to find a bigger can.

Laws of Poker in Hell:

1. Poker exists in Hell.  (Zeroth Law)
2. You can’t win.  (First Law)

3. You can’t break even.  (Second Law)
4

. You can’t leave the game.  (Third Law)

Messes don’t go away by themselves.  (Mom)

e Perpetual motion machines are impossible.  (Nearly everyone)

Interestingly, in number, second law aphorisms rival formal statements. Perhaps
this is not surprising since the second law began with Carnot and Kelvin as an
injunction against perpetual motions machines, which have been scorned publically
back to times even before Leonardo da Vinci (~ 1500). Arguably, most versions
of the second law add little to what we already understand intuitively about the
dissipative nature of the world; they only confirm and quantify it. As noted by
Pirruccello [37]:

Perhaps we’ll find that the second law is rooted in folk wisdom, plati-
tudes about life. The second law is ultimately an expression of human
disappointment and frustration.

For many, the first and best summary of thermodynamics was stated by Clau-
sius 150 years ago [4]:

1. Die Energie der Welt ist konstant.
2. Die Entropie der Welt strebt einem Maximum zu.

or, in English,

1. The energy of the universe is constant.
2. The entropy of the universe strives toward a maximum.

Although our conceptions of energy, entropy and the universe have undergone
tremendous change since his time, remarkably, Clausius’ summary still rings true
today — and perhaps even more so now for having weathered so much.

In surveying these many statements, one can get the impression of having
stumbled upon a scientific Rorschauch test, wherein the second law becomes a
reflection of one’s own circumstances, interests and psyche. However, although
there is much disagreement on how best to state it, its primordial injunction
against perpetuum mobile of the second type generally receives the most support
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and the least dissention. It is the gold standard of second law formulations. If the
second law is the flesh of thermodynamics, this injunction is its heart.

If the second law should be shown to be violable, it would nonetheless remain
valid for the vast majority of natural and technological processes. In this case, we
propose the following tongue-in-cheek formulation for a post-violation era, should
it come to pass:

(21) Post-Violation For any spontaneous process the entropy of the
universe does not decrease — except when it does.

1.3 Entropy: Twenty-One Varieties

The discovery of thermodynamic entropy as a state function is one of the
triumphs of nineteenth-century theoretical physics. Inasmuch as the second law is
one of the central laws of nature, its handmaiden — entropy — is one of the most
central physical concepts. It can pertain to almost any system with more than a
few particles, thereby subsuming nearly everything in the universe from nuclei to
superclusters of galaxies [38]. It is protean, having scores of definitions, not all
of which are equivalent or even mutually compatible’. To make matters worse,
“perhaps every month someone invents a new one,” [39]. Thus, it is not surprising
there is considerable controversy surrounding its nature, utility, and meaning. It
is fair to say that no one really knows what entropy is.

Roughly, entropy is a quantitative macroscopic measure of microscopic disor-
der. It is the only major physical quantity predicated and reliant upon wholesale
ignorance of the system it describes. This approach is simultaneously its greatest
strength and its Achilles heel. On one hand, the computational complexities of
even simple dynamical systems often mock the most sophisticated analytic and
numerical techniques. In general, the dynamics of n-body systems (n > 2) can-
not be solved exactly; thus, thermodynamic systems with on the order of a mole
of particles (10?3) are clearly hopeless, even in a perfectly deterministic Lapla-
cian world, sans chaos. Thus, it is both convenient and wise to employ powerful
physical assumptions to simplify entropy calculations — e.g., equal a priori proba-
bility, ergodicity, strong mixing, extensivity, random phases, thermodynamic limit.
On the other hand, although they have been spectacularly predictive and can be
shown to be reasonable for large classes of physical systems, these assumptions are
known not to be universally valid. Thus, it is not surprising that no completely
satisfactory definition of entropy has been discovered, despite 150 years of effort.
Instead, there has emerged a menagerie of different types which, over the decades,
have grown increasingly sophisticated both in response to science’s deepening un-
derstanding of nature’s complexity, but also in recognition of entropy’s inadequate
expression.

This section provides a working man’s overview of entropy; it focuses on the
most pertinent and representative varieties. It will not be exhaustive, nor will

7P. Hanggi claims to have compiled a list of 55 different varieties; here we present roughly 21.
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it respect many of the nuances of the subject; for these, the interested reader is
directed to the many fine treatises on the subject.

Most entropies possess a number of important physical and mathematical prop-
erties whose adequate discussion extends beyond the aims of this volume; these
include additivity, subadditivity, concavity, invariance, insensitivity, continuity
conditions, and monotonicity [24, 31, 39]. Briefly, for a system A composed of
two subsystems A; and Ay such that A = A; + As, the entropy is additive if
S(A) = S(A1) + S(A2). For two independent systems A and B, the entropy is
subadditive if their entropy when joined (composite entropy) is never less than
the sum of their individual entropies; i.e., S(A+ B) > S(A) + S(B). (Note that
for additivity the subsystems (Aj, As) retain their individual identities, while for
subadditivity the systems (A, B) lose their individual identities.) For systems A
and B, entropy demonstrates concavity if S(AA+(A—1)B) > AS(A)+(1-N)S(B);
0< A<

A workingman’s summary of standard properties can be extracted from
Gyftopoulous and Beretta [19]. Classical entropy must®:

a) be well defined for every system and state;

b) be invariant for any reversible adiabatic process (dS = 0) and in-
crease for any irreversible adiabatic process (dS > 0);

c¢) be additive and subadditive for all systems, subsystems and states.
d) be non-negative, and vanish for all states described by classical me-
chanics;

e) have one and only one state corresponding to the largest value of
entropy;

f) be such that graphs of entropy versus energy for stable equilibria
are smooth and concave; and

g) reduce to relations that have been established experimentally.

The following are summaries of the most common and salient formulations of
entropy, spiced with a few distinctive ones. There are many more.

(1) Clausius [4] The word entropy was coined by Rudolf Clausius (1865) as a
thermodynamic complement to energy. The en draws parallels to energy, while
tropy derives from the Greek word 7pomn, meaning change. Together en-tropy
evokes quantitative measure for thermodynamic change®.

Entropy is a macroscopic measure of the microscopic state of disorder or chaos
in a system. Since heat is a macroscopic measure of microscopic random kinetic
energy, it is not surprising that early definitions of entropy involve it. In its original
and most utilitarian form, entropy (or, rather, entropy change) is expressed in
terms of heat @) and temperature 7. For reversible thermodynamic processes, it
is

oQ
8Many physical systems in this volume do not abide these restrictions, most notably,

additivity.
9Strictly speaking, Clausius coined entropy to mean in transformation.
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while for irreversible processes, it is

0Q
d — 1.
S > T (1.9)
These presume that T is well defined in the surroundings, thus foreshadowing the
zeroth law. To establish fiduciary entropies the third law is invoked. For systems

“far” from equilibrium, neither entropy nor temperature is well defined.

(2) Boltzmann-Gibbs [40, 41] The most famous classical formulation of entropy
is due to Boltzmann:

Spa.u = S(E,N,V)=kInQ(E,N,V) (1.10)

Here Q(E, N,V) is the total number of distinct microstates (complexions) acces-
sible to a system of energy FE, particle number N in volume V. The Boltzmann
relation provides the first and most important bridge between microscopic physics
and equilibrium thermodynamics. It carries with it a minimum number of as-
sumptions and, therefore, is quite general. It applies directly to the microcanoni-
cal ensemble (fixed E, N, V), but, with appropriate inclusion of heat and particle
reservoirs, also to the canonical and grand canonical ensembles. In principle,
it applies to both extensive and nonextensive systems and does not presume the
standard thermodynamic limit (i.e., infinite particle number and volume [N — oo,
V — o], finite density [& = C' < oc]) [38]; it can be used with boundary condi-
tions, which often handicap other formalisms; it does not presume temperature.
However, ergodicity (or quasi-ergodicity) is presumed in that the system’s phase
space trajectory is assumed to visit smoothly and uniformly all neighborhoods of
the (6N-1)-dimensional constant-energy manifold consistent with Q(E, N, V) 10,

The Gibbs entropy is similar to Boltzmann’s except that it is defined via ensem-
bles, distributions of points in classical phase space consistent with the macroscopic
thermodynamic state of the system. Hereafter, it is called the Boltzmann-Gibbs
(BG) entropy. Like other standard forms of entropy, Spq,, applies strictly to
equilibrium systems.

Note that 2 is not well defined for classical systems since phase space variables
are continuous. To remedy this, the phase space can be measured in unit volumes,
often in units of 4. This motivates coarse-grained entropy. Coarse-graining reduces
the information contained in €2 and may be best described as a kind of phase space
averaging procedure for a distribution function. The coarse-grained distribution
leads to a proper increase of the corresponding statistical (information) entropy.
A perennial problem with this, however, is that the averaging procedure is not
unique so that the rate of entropy increase is likewise not unique, in contrast to
presumably uniquely defined increase of the thermodynamic entropy.

Starting from Spg,,, primary intensive parameters (temperature T, pressure
P, and chemical potential p) can be calculated [42-46]:

10 Alternatively, ergodicity is defined as the condition that the ensemble-averaged and time-
averaged thermodynamic properties of a system be the same.
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as. 1
(a_E)N,V =7 (1.11)
as. P
oS i

If one drops the condition of fixed F and couples the system to a heat reservoir
at fixed temperature 7', allowing free exchange of energy between the system
and reservoir, allowing E to vary as (0 < E < c0), then one passes from the
microcanonical to the canonical ensemble [41-46].

For the canonical ensemble, entropy is defined as

Spge=k[In(Z)+ BE] =k {%(Tln(Z))] . (1.14)

Here § = % and Z is the partition function (Zustandsumme or “sum over

states”) upon which most of classical equilibrium thermodynamic quantities can
be founded:

Z=Y e PP (1.15)

where E; are the constant individual system energies and F is the mean (average)
System energy:

= 2 Bie P

The probability p; is the Boltzmann factor exp[—E;/kT]. One can define entropy
through the probability sum

Spa = —k Zpi Inp;, (1.17)

or in the continuum limit

Spe = —k/flnfdv, (1.18)

where f is a distribution function over a variable v. This latter expression is
apropos to particle velocity distributions.

If, in addition to energy exchange, one allows particle exchange between a
system and a heat-particle reservoir, one passes from the canonical ensemble (fixed
T, N, V) to the grand canonical ensemble (fixed T, u, V), for which entropy is
defined [41-46]:

1,0q

SBG,gc = B(a_T

(T n(2)

)o,v — NkIn(z) + kg = k[ 5T

luv- (1.19)
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Here ¢ is the g-potential:

¢ =q(=V.T) = [Z(=, V,T)], (1.20)

defined in terms of the grand partition function:

Z(z,V,T)=> exp(-BE; —aN;) = Y 2N Zy (V,T). (1.21)
i, N;=0

Here z = e P* is the fugacity, Z N, is the regular partition function for fixed par-
ticle number Nj, and o = —%. The sum is over all possible values of particle
number and energy, exponentially weighted by temperature. It is remarkable that
such a simple rule is able to predict successfully particle number and energy oc-
cupancy and, therefrom, the bulk of equilibrium thermodynamics. This evidences

the power of the physical assumptions underlying the theory.

(3) von Neumann [47] In quantum mechanics, entropy is not an observable, but
a state defined through the density matrix, p:

Sun(p) = =kTr[pIn(p)]. (1.22)

(Recall the expectation value of an observable is (A) = Tr(pA).) Roughly, S,n(p)
is a measure of the quantity of chaos in a quantum mechanical mixed state. The
von Neumann entropy has advantage over the Boltzmann formulation in that,
presumably, it is a more basic and faithful description of nature in that the number
of microstates for a system is well defined in terms of pure states, unlike the case of
the classical continuum. On the other hand, unlike the Boltzmann microcanonical
entropy, for the von Neumann formulation, important properties like ergodicity,
mixing and stability strictly hold only for infinite systems.

The time development of p for an isolated system is governed by the Liouville
equation

d 1

i—p(t) = —[H, p(t)] = Lp(t). 1.23

5 plt) = 2 [H, plt)] = Lo(t) (123
Here H is the Hamiltonian of the system and L£... = %[[L ...] is the Liouville

superoperator. It follows that the entropy is constant in time. As noted by Wehrl
(39],

. the entropy of a system obeying the Schrédinger equation (with a
time-independent Hamiltonian) always remains constant [because the
density matrix time evolves as] p(t) = e~ tpett. Since et is a
unitary operator, the eigenvalues of p(t) are the same eigenvalues of
p- But the expression for the entropy only involves the eigenvalues of
the density matrix, hence S(p(t)) = S(p). (In the classical case, the

analogous statement is a consequence of Liouville’s theorem.)!!

1 This statement holds if H is a function of time; i.e., p(t) = Up(O)UT, where U =
Texp(—% OtHdt).
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Figure 1.1: Sgpp is based on weight processes.

Since the Schrodinger equation alone is not sufficient to motivate the time evolu-
tion of entropy as normally observed in the real world, one usually turns to the
Boltzmann equation, the master equation, or other time-asymmetric formalisms
to achieve this end [43, 48, 49, 50]. Finally, the von Neumann entropy depends
on time iff p is coarse-grained; in contrast, the fine-grained entropy is constant.
(This, of course, ignores the problematic issues surrounding the non-uniqueness of
the coarse graining process.)

(4) Gyftopoulous, et al. [19, 51] A utilitarian approach to entropy is advanced
by Gyftopoulos, Hatsopoulos, and Beretta. Entropy Sggp is taken to be an intrin-
sic, non-probabilistic property of any system whether microscopic, macroscopic,
equilibrium, or nonequilibrium. Its development is based on weight processes in
which a system A interacts with a reservoir R via cyclic machinery to raise or
lower a weight (Figure 1.1). Of course, the weight process is only emblematic of
any process of pure work. Sggp is defined in terms of energy F, a constant that
depends on a reservoir cg, and generalized available energy QF as:

Scun = S+ -[(E - Eo) - (@ - 0f) (1.2
for a system A that evolves from state A; to state Ag. Ep and QF are values
of a reference state and Sy is a constant fixed value for the system at all times.
Temperature is not ostensibly defined for this system; rather, cg is a carefully
defined reservoir property (which ultimately can be identified with temperature).
Available energy QF is the largest amount of energy that can be extracted from
the system A-reservoir combination by weight processes. Like Sgpp, it applies to
all system sizes and types of equilibria.

At first meeting, Sgyp may seem contrived and circular, but its method of
weight processes is similar to and no more contrived than that employed by Planck
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and others; its theoretical development is no more circular than that of Lieb and
Yngvason [31]; furthermore, it claims to encompass broader territory than either
by applying both to equilibrium and nonequilibrium systems. It does not, how-
ever, provide a microscopic picture of entropy and so is not well-suited to statistical
mechanics.

(5) Lieb-Yngvason [31] The Lieb-Yngvason entropy Sry is defined through the
mathematical ordering of sets of equilibrium states, subject to the constraints of
monotonicity, additivity and extensivity. The second law is revealed as a math-
ematical theorem on the ordering of these sets. This formalism owes significant
debt to work by Carathéodory [30], Giles [52], Buchdahl [53] and others.

Starting with a space I' of equilibrium states X,Y,Z ..., one defines an ordering
of this set via the operation denoted <, pronounced precedes. The various set
elements of I" can be ordered by a comparison procedure involving the criterion of
adiabatic accessibility. For elements X and Y, [31]

A state Y is adiabatically accessible from a state X, in symbols X < Y,
if it is possible to change the state X to Y by means of an interaction
with some device (which may consist of mechanical and electrical parts
as well as auxiliary thermodynamic systems) and a weight, in such a
way that the device returns to its initial state at the end of the process
whereas the weight may have changed its position in a gravitation field.

This bears resemblance to the GHB weight process above (Figure 1.1). Although
superficially this definition seems limited, it is quite general for equilibrium states.
It is equivalent to requiring that state X can proceed to state Y by any natural
process, from as gentle and mundane as the unfolding of a Double Delight rose in
a quiet garden, to as violent and ultramundane as the detonation of a supernova.

If X proceeds to Y by an irreversible adiabatic process, this is denoted X <<
Y, and if X < Y and Y < X, then X and Y are called adiabatically equivalent,

written X 2 Y. If X < Yor Y < X (or both), they are called comparable.
The Lieb-Yngvason entropy Spy is defined as [31]:

There is a real-valued function on all states of all systems (including
compound systems), called entropy and denoted by S such that
a) Monotonicity: When X and Y are comparable states then

X <Y if and only if S(X) < S(Y).
b) Additivity and extensivity: If X and Y are states of some (possibly
different) systems and if (X,Y) denotes the corresponding state in the

composition of the two systems, then the entropy is additive for these
states, t.e.,

S(X,Y) = S(X) + S(Y)
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S is also extensive, i.e., for each t > 0 and each state X and its scaled
copy tX,

S(tX) = tS(X).
The monotonicity clause is equivalent to the following:

X A Y = $(X) = S(Y); and
X <<Y = S(X) < S(Y).

The second of these says that entropy increases for an irreversible adiabatic pro-
cess. This is the Lieb-Yngvason formulation of the second law.

The existence and uniqueness of Spy can be shown to follow from assump-
tions surrounding adiabatic accessibility and the comparsion process. In this for-
malism, temperature is not a primitive concept; rather, it is defined via Spy as
% = (8gij )v, where U is energy and V' is volume. The mathematical details of
these results are beyond the scope of this discussion; the intrepid reader is directed
to [31].

(6) Carathéodory Historically preceding Spy, Carathéodory also defined en-
tropy in a formal mathematical sense [30, 6].

For simple'? systems, Carathéodory’s principle is equivalent to the
proposition that the differential form Q) := dU — §W possesses an
integrable divisor, i.e., there exists functions S and T on the state
space I' such that

5Q = TdS.

Thus, for simple systems, every equilibrum state can be assigned values
for entropy and absolute temperature. Obviously these functions are
not uniquely determined by the relation [6Q = T'dS].

Carathéodory’s entropy was not widely accepted by working scientists during his
lifetime, but it has grown in significance during the last 40 years as thermodynamic
foundations have been shored up.

(7) Shannon [54] Various information-relevant entropies have been proposed over
the last six decades, the most prominent of which are the Shannon entropy and
algorithmic randomness [55, 56, 57]. These are especially salient in considerations
of sentient Maxwell demons [21], which have helped expose the deep relationships
between physics and information theory.

Let p; be probabilities of mutually exclusive events, say for instance, the prob-
abilties of particular letters in an unknown word. The uncertainty (entropy) of
the information about this situation is the Shannon entropy:

12Consult the literature for the requirements of a simple system [6, 30]
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Ssn = — ij log(p;) (1.25)

J

The logarithm may be taken to any fixed base, but base 2 is standard, giving
entropy in bits. Shannon entropy can be seen to be a discrete form of the classical
Boltzmann-Gibbs entropy, (1.17).

(8) Fisher Shannon entropy is defined over a space of unordered elements, for

instance, letters. For a space of ordered elements, for example, a continuous

parameter (e.g., the length or brightness of meteor trails), Fisher information

is appropriate. For a probability distribution f(z;¢) in the random variable x
dependent on the unobservable variable ¢, the Fisher information (entropy) is

Sr(¢) = K[21 )2 = —K o

r(¢) = [8—¢ og f(x;9)]" = — [872

Clearly, the sharpness of the support curve is proportional to the expection of

Sr(¢), thus high information content (low entropy) corresponds to a sharp distri-
bution and a low information content (high entropy) to a broad distribution.

log f(z; ¢)] (1.26)

(9) Algorithmic Randomness [55, 56, 57] Algorithmic randomness (algorith-
mic complexity, Kolmorgorov complexity) of a string of elements is defined as the
minimum size of a program (e.g., in bits) executed on a universal computer that
yields the string. Strings are relatively simple or complex depending on whether
its program length is relatively short or long, respectively. For example, the string
of 60,000 digits (121223121223121223...) is relatively simple and has relatively low
algorithmic randomness since it can be programmed as 10,000 repeating blocks
of (121223), whereas a completely random string of 60,000 digits cannot be com-
pressed this way and thus has a relatively large algorithmic randomness. Most
strings cannot be compressed and, to leading order in binary notation, their al-
gorithmic randomness is given by their lengths in bits. By example, a random
natural number N, if it can be expressed as N ~ 2° has algorithmic randomness
~logaN = s.

Algorithmic complexity, in contrast to other standard definitions of entropy,
does not rely on probabilities. However, the randomness of a string is not uniquely
determined and there is no general method to discern a simple string from a com-
plex one; this is related to Godel’s undecidability [59]. For example, the sequence
(2245915771836104547342715) may appear completely random, but it is easily
generated from 7°. Or, the letter sequence FPURCLK might seem random until
it is unscrambled and considered in an appropriate context. Apparently, order can
be in the eye of the beholder.

Zurek suggests that physical entropy “is the sum of (i) the missing information
measured by Shannon’s formula and (ii) of the [algorithmic content] in the avail-
able data about the system” [58].

(10) Tsallis [60, 61] Tsallis entropy is a controversial generalization of Boltzmann-
Gibbs entropy and is an heir to the Rényi and Dardczy entropies below. It is
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defined as

S = qul [1 _ / fq(x)da:] , (1.27)

where ¢ is a real number entropic index and f(x) is a probability distribution
function. For g = 1, S reduces to the Boltzmann-Gibbs entropy.

Primary virtues of the Tsallis entropy include its mathematical simplicity and
descriptiveness of nonextensive systems. A physical quantity is extensive if its
value scales linearly with the size of the system 3. The extensive Boltzmann-Gibbs
entropy of two independent systems A and B is Spg(A+ B) = Spg(A)+ Spa(B),
while for the Tsallis entropy it is Sts(A+B) = Sts+S7s(B)+(1—q)Ss(A)Sts(B).
The parameter g can be taken as a measure of nonextensivity.

Tsallis entropy has been applied to numerous disparate physical phenomena
that are deemed beyond the reach of equilibrium thermodynamics. Notably, these
include systems with long-range nonextensive fields (e.g., gravitational, electro-
static) such as plasmas and multi-particle self-gravitating systems (e.g., galaxies,
globular clusters). It has been applied to the behaviors of self-organizing and low-
dimensional chaotic systems and processes far from equilibrium; examples include
financial markets, crowds, traffic, locomotion of microorganisms, subatomic par-
ticle collisions, and tornados. Unfortunately, its underlying physical basis has not
been well established, leading critics to label it ad hoc and its successes little more
than “curve fitting.” Its elegant simplicity and adaptability, however, cannot be
denied.

The entropic index (nonextensivity parameter) ¢ is taken to be a measure of the
fractal nature of a system’s path in phase space. Whereas under Boltzmann-Gibbs
formalism, a system on average spends equal time in all accessible, equal-sized vol-
umes of phase space (equal a priori probability), under the Tsallis formalism the
phase space path is fractal, thereby allowing it to model chaotic, nonequilibrium
systems, and display rapid and radical changes in behavior and phase.

(11-21) Other Entropies There are a number of other entropy and entropy-like
quantities that are beyond the scope of this discussion. These include (with p the
density matrix, unless otherwise noted):

Darécezy entropy [62]:

1

50 = 5t 1

(Tr(p*) — 1), (1.28)

with o > 0 and « # 1.
Rényi entropy [63]:

Sp =

= ()], (1.29)

again with @ > 0 and « # 1.

13Extensivity is a traditional requirement for thermodynamic quantities like energy and
entropy.
M Notice that if ¢ — 1, then S7s — Sgga.
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Hartley entropy [64]:

Su = kIn[N(p)], (1.30)

where N(p) is the number of positive eigenvalues of p.
Infinite norm entropy:

Stn = —kIn||p|lcos (1.31)

where ||p|loo = Pmaq 1S the largest eigenvalue of p.
Relative entropy (classical mechanics) [65, 66]:

SRel,c = — /p(lnp —Ino)dr, (1.32)

where p and ¢ are probability distributions and 7 is the phase space coordinate.
Relative entropy (quantum mechanics):

Sretq(olp) =Trlp(Inp —Ino)], (1.33)

where p and o are distinct density matrices. It is non-negative [67].

In addition to these, there is Segal entropy [68], which subsumes many of the
quantum mechanical entropies mentioned above; Kolmogorov-Sinai (KS) entropy,
which describes dynamical systems undergoing discrete time evolution; Kouch-
nirenko A entropies, close relatives to KS entropy; skew entropy [69]; Ingarden-
Urbanik entropy [70]; Macdonald entropy [18]. For completeness, you may add
your own personal favorite here:

1.4 Nonequilibrium Entropy

There is no completely satisfactory definition of entropy. To some degree, every
definition is predicated on physical ignorance of the system it describes and, there-
fore, must rely on powerful ad hoc assumptions to close the explanatory gap. These
limit their scopes of validity. Let us review a few examples. The Boltzmann-Gibbs
entropy assumes equal a priori probability either of phase space or ensemble space.
While this is a reasonable assumption for simple equilibrium systems like the ideal
gas and Lorentz gas, it is known to fail for large classes of systems, especially at
disequilibrium; the molecular chaos ansatz (Boltzmann’s Stosszahlansatz) is sim-
ilarly suspect. It is not known what the necessary conditions are for ergodicity.
The thermodynamic limit, which is presumed or necessary for most quantum and
classical thermodynamic formalisms, on its face cannot be completely realistic,
particularly since it ignores boundary conditions that are known to be pivotal for
many thermodynamic behaviors. Extensivity, also presumed for most entropies,
is ostensibly violated by systems that exhibit long-range order and fields — these
include systems from nuclei up to the largest scale structures of the universe [38].
Information entropies are hobbled by lack of general definitions of order, disorder
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Figure 1.2: One-dimensional velocity distribution functions: (a) non-Maxwellian;
(b) Maxwellian.

and complexity. Finally, as it is deduced from thermodynamics, the notion of
entropy is critically dependent on the presumed validity of the second law.

Among the many foundational issues thwarting a general definition of physi-
cal entropy, none is more urgent than extending entropy into the nonequilbrium
regime. After all, changes in the world are primarily irreversible nonequilibrium
processes, but even the most basic nonequilibrium properties, like transport coef-
ficients, cannot be reliably predicted in general®®.

The prominent classical and quantum entropies strictly apply at equilibrium
only. As a simple example, consider the two one-dimensional velocity distributions
in Figure 1.2. Distribution f, is highly nonequilibrium (non-Maxwellian) and does
not have a well-defined temperature, while f; is Maxwellian and does have a well-
defined temperature. Let’s say we wish to add heat 6Q to f, to transform it into
f» and then calculate the entropy change for this process via fl.f % = AS. This
presents a problem in this formalism because T is not properly defined for f, or
any other other intermediate distribution on its way to the Maxwellian f, 6.

While small excusions into near nonequilibrium can be made via the Onsager
relations [71] or fluctuation-dissipation theorems [43, 72], in general, far nonequi-
librium systems are unpredictable. Only recently has theory begun to make sig-
nificant headway into these regimes. Excursions are limited to idealized systems
and carry with them their own questionable baggage, but results are heartening
[73]. Notable past and present exponents of nonequilibrium thermodynamics in-
clude Onsager, Prigogine, Meixner, Green, Kubo, Ruelle, Hoover, Evans, Cohen,
Gallavotti, Lebowitz, Nicolis, Gaspard, Dorfmann, Maes, Jou, Eu and many others
[71-89]. Notable recent advances in the microscopic descriptions of nonequilib-

15Some entropies, like S p and Stg, are claimed to apply at nonequilibrium, but they do
not have compelling microscopic descriptions.
160n the other hand, one might aver that, since S = —kf fIn fdv, one could calculate AS =

—k[f foln fodv — [ foln fadv].
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rium entropy have proceded largely through study of nonequilibrium steady states
(NESS), especially in fluids (gases) [73]. This formalism is apropos to many of the
challenges in this volume.

For NESS, classical phase space volumes (dx = dqdp) are often replaced by
more general measures, perhaps the best known of which is the Sinai-Ruelle-Bowen
(SRB) measure. It is especially useful in describing chaotic systems whose phase
space development is hyperbolic; that is, stretching in some dimensions while con-
tracting in others. Phase space stretching gives rise to the hallmark of chaos:
sensitivity to initial conditions. The separation rate of initially proximate phase
space trajectories is given by Lyapounov exponents A, one for each dimension.
Negative A indicates convergence of trajectories, while positive A indicates expo-
nential separation of nearby trajectories — and chaos.

Although a general definition of entropy in NESS is lacking, entropy production
can be expressed as

$(p) = / (—V,X)p(dx), (1.34)

where divergence is with respect to the phase space measure coordinate and the
nonequilibrium time development of x is determined via

dx

i X(x), (1.35)
where X'(x) is a vector field denoting physical forces. Using SRB measures, the
second law demands that S(t) > 0; for dissipative systems (those producing heat)
S(t) > 0. This is possible because SRB measures break time reversal symmetry,
rendering the system non-Hamiltonian, thus allowing V, X # 0.

Within the chaotic dynamics paradigm, NESS exist at nonequilibrium attrac-
tors in phase space. An example of NESS attractors among second law challenges
can be inferred from Figure 6.6 in §6.2.4.3, pertaining to a gravitator that circulates
at a steady-state angular velocity within a gas-filled cavity, driven by spontaneous
pressure gradients. The primary difference between this and standard NESS is
that, while traditional NESS are dissipative (turn work into heat), second law
challenges are regenerative (turn heat into work), thus admitting S (t) <0.

Nonequilibrium, irreversibility and dissipation are the triumvirate that rules
the natural thermodynamic world. Second law challenges obey the former two,
but not the third. As such, much of the formalism already developed for nonequi-
librium thermodynamics should be directly applicable to the challenges in this
volume, the chief proviso being sign reversal for heat and entropy production. By
turning this considerable theoretical machinery on the challenges, they may be
either further supported or resolved in favor of the second law.

It is now commonly held that the second law arises as a consequence of the
interaction between a quantum system and its thermal environment [90, 91, 92].
While this might be true, it should be noted that system-bath interactions can
also take an active role in violations of specific formulations of this law in specific
situations, as will be shown in Chapter 3.
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1.5 Entropy and the Second Law: Discussion

Entropy and the second law are commonly conflated — for example, the non-
decrease of entropy for a closed system is an oft-cited version — but many formu-
lations of the second law do not involve entropy at all; consider, for instance, the
Clausius and Kelvin-Planck forms. Entropy is surely handy, but it is not essential
to thermodynamics — one could hobble along without it. It is more critical to
statistical mechanics, which grapples with underlying dynamics and microstates,
but even there its utility must be tempered by its underlying assumptions and lim-
itations, especially when treating chaotic, nonlinear, and nonequilibrium systems
(See §2.3.2.).

The majority of second law challenges are phrased in terms of heat and work,
rather than in terms of entropy. This is largely because entropy per se is difficult
to measure experimentally. Heat, temperature, pressure, and work are measured
quantities, while entropy is usually inferred. Thus, entropy, the second law, and
its challenges are not as intimate as is often assumed. Entropy is a handmaiden
of the second law, not its peer.

At the microscopic level an individual molecule doesn’t know what entropy is
and it couldn’t care less about the second law. A classical system of N particles is
also oblivious to them insofar as its temporal trajectory in a (6N-1)-dimensional
phase space is simply a moving point to which an entropy cannot be ascribed and
to which entropy increases are meaningless. (In this context, for ensemble theory,
entropy cannot be strictly defined since f is singular.) Entropy is a global property
of a system, measurable in terms of the surface area of the constant energy manifold
on which the system’s phase space point wanders, but this assumes conditions on
the motion of the phase space point that, by definition, are either not measured
or not measurable and, hence, might not be valid.

In its very conception, entropy presumes ignorance of the microscopic details
of the system it attempts to describe. In order to close the explanatory gap, one or
more far-reaching assumptions about the microscopic behavior or nature of that
system must be made. Many of these provisos — e.g., ergodicity, strong mixing,
equal a prior: probability, extensivity, thermodynamic limit, equilibrium — allow
accurate predictions for large and important classes of thermodynamic phenomena;
however, every formulation of entropy makes assumptions that limit the parameter
space in which it is valid, such that no known formulation applies to all possible
thermodynamic regimes'”. It is doubtful that any formulation of entropy can be
completely inclusive since there will probably always be special cases outside the
range of validity of any proviso powerful enough to close the explanatory gap. The
best one can hope to do is to identify when a particular type of entropy will or
will not apply to a particular case — and even the criteria for this hope are not
known. Insofar as complex systems — and most realistic thermodynamic systems
are complex — can display chaotic and unpredictable behavior (unpredictable to
the experimenter and perhaps even to the system itself), it seems unlikely that any
single form of entropy will be able to capture all the novelty Nature can produce.

17Systems are known for which one, many, or all the above provisos fail.
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Entropy formulations vary across disciplines, from physics to engineering, from
chaos theory to economics, from biology to information theory. Even within a sin-
gle discipline (physics) there are numerous versions between classical and quantum
regimes, between utilitarian and formal approaches. Not all are equivalent, or even
compatible. Most become problematic at nonequilibrium, but this is where physics
becomes the most interesting. Most entropies blend seemlessly into others, making
clear distinctions nearly impossible. One could say the subject of entropy is well-
mixed and somewhat disordered. This state of affairs is intellectually unsatisfying
and epistemologically unacceptable.

It is the opinion of one of the authors (d.p.s.) that, despite its singular impor-
tance to thermodynamics and statistical mechanics, entropy will never have a com-
pletely satisfactory and general definition, nor will its sovereign status necessarily
endure. Rather, like the calorique, which was useful but not intellectually persua-
sive enough to survive the 19** century, entropy could well fade into history'®. In
the end, each thermodynamic system (particularly nonequilibrium ones) should
be considered individually and microscopically with respect to its boundary con-
ditions, constraints, and composition to determine its behavior'®. Considered
classically, it is the 6N-dimensional phase space trajectory that truly matters and
the various approximations that currently expedite calculations are too simplistic
to capture the true richness of dynamic behaviors. Thus, each system should be
considered on a case by case basis. If entropy is defined at the microscopic level
of detail necessary to make completely accurate predictions about phase space
trajectories, however, it loses its utility — and meaning 2°.

Entropy remains enigmatic. The more closely one studies it, the less clear it
becomes. Like a pointillisme painting whose meaning dissolves into a collection
of meaningless points when observed too closely, so too entropy begins to lose
meaning when one contemplates it at a microscopic level. Insofar as our definition
of entropy is predicated on what is presumed unknown or unknowable about a
system, it is epistemologically unsatisfactory and must ultimately be surpassed.
As our understanding of the underlying dynamics of complex systems brightens,
so must the utility of entropy dim and, perhaps, entirely disappear. Fortunately,
the second law can survive without its handmaiden.

1.6 Zeroth and Third Laws of Thermodynamics

The first law is the skeleton of thermodynamics; the second law is its flesh.
The first gives structure; the second gives life. By comparison, the zeroth and

181n the near term, however, this will surely not be the case.

I9A few simple cases, like the ideal gas, will be predictable due to their thermodynamic sim-
plicity, but realistically complex nonequilibrium systems that possess significant thermodynamic
depth — like life — will defy tidy description in terms of entropy, or easy prediction in terms of
behavior. In the most interesting cases, chaos rules.

200n the other hand, perhaps if a completely general definition of order and complexity is
discovered, this will lead to a general definition of physical entropy.
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third laws are mere hat and slippers. Since one should not go about undressed,
let us briefly consider the latter two.

Zeroth Law The zeroth law pertains to the transitivity of equilibrium. It can be
stated:

If system A is in equilibrium with systems B and C, then system B is
in equilibrium with system C.

More commonly, it is expressed in terms of temperature, because temperature is
the easiest equilibrium property to measure experimentally:

If the temperature of system A is equal to the temperature of system B,
and the temperature of system B is equal to the temperature of system
C, then the temperature of system A is equal to the temperature of
system C. (If Ty = T and Tp = T¢, then Ty = T¢.)

Or, to put it succinctly:
Thermometers exist.

The role of this law is far-reaching since it allows one to introduce, within
axiomatic thermodynamics, integral intensive characteristics of mutually equilib-
rium systems, such as temperature, pressure, or chemical potential. It is therefore
unsettling that quantum mechanical models exist that predict its violation (§3.6.7).

Third Law?!' The third law of thermodynamics pertains primarily to establishing
fiduciary entropies. Like the second and zeroth, it can be stated in various ways.
The first, the Nernst-Planck form states:

Nernst-Planck Any change in condensed matter is, in the limit of
the zero absolute temperature, performed without change in entropy.
(Nernst 1906)

Planck supplemented this in 1912 (in modern form):

Planck The entropy of any pure substance at 7' = 0 is finite, and,
therefore, can be taken to be zero.

The third law says that any substance that has a unique stable or metastable
state as its temperature is reduced toward absolute zero can be taken to have zero
entropy at absolute zero [93]. In fact, at 7' = 0 most substances will have residual
zero point entropies associated with such things as mixed isotopic composition,
randomly oriented nuclear spins, minor chemical impurities, or crystal defects, but
if these do not affect the thermodynamic process for which entropy is pertinent,
they can be safely ignored since “they just go along for the ride.” In some sense,
the entropy depends on the knowledge or opinion of the observer. Ideally, if the

21M.O. Scully maintains, “The third law has all the weight of an Italian traffic advisory.”
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number of microstates that describes this perfect substance at T = 0 is = 1,
then its entropy via the Boltzmann formula is S = kIn[Q = 1] = 0 exactly. This
law has far reaching consequences like the zero-temperature vanishing of specific
heats, thermal expansion coefficients, latent heats of phase transitions.

The third law can also be stated as impossibilities, for instance:

It is impossible to reduce the temperature of a system to absolute zero
via any finite sequence of steps.

or,
Perpetuum mobile of the third type are impossible.

The first of these can be argued formally [93] and has not been violated ex-
perimentally; the current lower limit of experimentally achieved temperatures is
about 107°K. The second of these has been effectively violated by a number of
non-dissipative systems, notably superfluids in motion and supercurrents, whose
theoretical decay time exceeds 10° years.

In summary, the laws of thermodynamics are not as sacrosanct as one might
hope. The third law has been violated experimentally (in at least one form); the
zeroth law has a warrant out for its arrest; and the first law can’t be violated
because it’s effectively tautological. The second law is intact (for now), but as we
will discuss, it is under heavy attack both experimentally and theoretically.



30

Challenges to the Second Law

References

[1]

2]

[15]

[16]

Carnot, S., Réflexions sur la Puissance Motrice due Feu, Edition
Critique par Robert Fox (J.Vrin, Paris, 1978).

Brush, S., The Kind of Motion We Call Heat (North-Holland, Ams-
terdam, 1976).

von Baeyer, H.C., Warmth Disperses and Time Passes — The His-
tory of Heat (The Modern Library, New York, 1998).

Clausius, R., Abhandlungungen tiber die mechanische Wirmetheorie,
Vol. 1, (F. Vieweg, Braunschweig, 1864); Vol. 2 (1867); The Mechan-
ical Theory of Heat (Macmillan, London, 1879); Phil. Mag. 2 1, 102
(1851); 24, 201, 801 (1862).

Kelvin, Lord (Thomson, W.), Mathematical and Physical Papers,
Vol. I (Cambridge University Press, Cambridge, 1882).

Utfink, J., Studies Hist. Phil. Mod. Phys. 32 305 (2001).

Kestin, J., The Second Law of Thermodynamics (Dowden, Hutchin-
son, and Ross, Stroutsburg, PA, 1976).

Planck, M., Vorlesungen tiber die Theorie der Wdarmestrahlung
(Barth, Leipzig, 1906); Treatise on Thermodynamics 7" ed., Trans-
lated by Ogg, A. (Dover, New York, 1945).

Konig, F.O., Surv. Prog. Chem. 7 149 (1976).

Langton, S., in First International Conference on Quantum Limits
to the Second Law, AIP Conf. Proc., Vol. 643, Sheehan, D.P., Editor,
(AIP Press, Melville, NY, 2002) pg. 448.

Davies, P.C.W., The Physics of Time Asymmetry (University of Cal-
ifornia Press, Berkeley, 1974).

Reichenbach, H., The Direction of Time (University of California
Press, Berkeley, 1957).

Sachs, R.G., The Physics of Time Reversal (University of Chicago
Press, Chicago, 1987).

Halliwell, J.J., Pérez-Mercader, J. and Zurek, W.H., Editors, Physi-
cal Origins of Time Asymmetry (Cambridge University Press, Cam-
bridge, 1994).

Zeh, H.D., The Physical Basis of the Direction of Time (Springer-
Verlag, Heidelberg, 1989).

Savitt, S.F., Editor, Time’s Arrow Today (Cambridge University
Press, Cambridge, 1995).



Chapter 1:

(17]

[18]
[19]

[20]

21]

[32]
[33]

[34]
[35]

Entropy and the Second Law 31

Price, H., Time’s Arrow and Archimedes’ Point (Oxford University
Press, Oxford, 1996).

Macdonald, A., Am. J. Phys. 63 1122 (1995).

Gyftopoulos, E.P. and Beretta, G.P., Thermodynamics: Foundations
and Applications (Macmillan, New York, 1991).

Maxwell, J.C., Theory of Heat (Longmans, Green, and Co., London,
1871).

Leff, H.S. and Rex, A.F., Mazwell’s Demon 2: Entropy, Classical
and Quantum Information, Computing, (Institute of Physics, Bristol,
2003); Mazwell’s Demon. Entropy, Information, Computing (Hilger
& TOP Publishing, Bristol, 1990).

Smoluchowsky, M., Phys. Zeit. 12 1069 (1912).

Wang, G.M., Sevick, E.M., Mittag, E., Searles, D.J., and Evans,
D.J., Phys. Rev. Lett. 89 50601 (2002).

Mackey, M.C., Time’s Arrow: The Origins of Thermodynamic Be-
havior (Springer-Verlag, New York, 1992); Rev. Mod. Phys. 61 981
(1989).

Gibbs, J.W., The Scientific Papers of J. Willard Gibbs, Vol. 1 Ther-
modynamics, (Longmans, London, 1906).

Jaynes, E.T., Phys. Rev. 106 620 (1957).

Katz, A. Principles of Statistical Mechanics (Freeman, San Francisco,
1967).

Truesdell, C., The Tragicomical History of Thermodynamics 1822-54
(Springer-Verlag, New York, 1980).

Arnold, V., Proceedings of the Gibbs Symposium (American Mathe-
matical Society, Providence, 1990) pg. 163.

Carathéodory, C., Math. Annalen 67 355 (1909).

Lieb, E.H. and Yngvason, J., Physics Reports 310 1 (1999); Phys.
Today 53 32 (2000).

Born, M., Phys. Zeit. 22 218, 249, 282 (1921).

Allahverdyan, AE. and Nieuwenhuizen, Th. M.,
http://arxiv.org/abs/cond-mat,/0110422.

Pusz, W. and Woronowicz, L, Commun. Math. Phys. 58 273 (1978).

Lenard, A., J. Stat. Phys. 19 575 (1978).



32

Challenges to the Second Law

Cépek, V. and Mancal, T., Europhys. Letters 48 365 (1999).
Pirruccullo, A., private communications (2004).

Gross, D.H.E., Microcanonical Thermodynamics, World Scientific
Lecture Notes in Physics, Volume 66, (World Scientific, Singapore,
2001).

Wehrl, A., Rev. Mod. Phys. 50 221 (1978).
Boltzmann, L., Wiener Ber. 75 67; 76 373 (1877).

Gibbs, J.W., Elementary Principles in Statistical Mechanics (Yale
University Press, Boston, 1902).

Tolman, R.C., The Principles of Statistical Mechanics (Oxford Uni-
versity Press, Oxford, 1938).

Reif, F., Fundamentals of Statistical and Thermal Physics (McGraw-
Hill, New York, 1965).

Penrose, O., Foundations of Statistical Mechanics (Pergamon Press,
Oxford, 1970).

Reichl, L.E., A Modern Course in Statistical Physics (Unversity of
Texas Press, Austin, 1980).

Pathria, R.K., Statistical Mechanics (Pergamon Press, Oxford, 1985).
von Neumann, J., Z. Phys. 57 30 (1929); G&tt. Nachr. 273 (1927).
Boltzmann, L., Wiener Ber. 66 275 (1872).

Prigogine, 1., Introduction to Thermodynamics of Irreversible Pro-
cesses (Interscience/Wiley, New York, 1968).

Beretta, G.P., Gyftopoulos, E.P., and Hatsopoulos, G.N., Nuovo Ci-
mento Soc. Ital. Fis. B. 82B 169 (1984).

Gyftopoulos, E.P. and Cubukgu, E., Phys. Rev. E 55 3851 (1997).

Giles, R., Mathematical Foundations of Thermodynamics (Pergamon,
Oxford, 1964).

Buchdahl, H.A., The Concepts of Classical Thermodynamics (Cam-
bridge University Press, Cambridge, 1966).

Shannon, C.E., Bell System Tech. J. 27 379 (1948); Shannon, C.E.
and Weaver, W., The Mathematical Theory of Communication (Uni-
versity of Illinois, Urbana, 1949).

Kolmogorov, A.N., Inf. Transmission 1 3 (1965)



Chapter 1:

[56]
[57]

[58]
[59]

[70]
[71]
[72]

Entropy and the Second Law 33

Bennett, C.H., Int. J. Theor. Phys. 21 905 (1982).

Zurek, W.H., Editor, Complexity, Entropy, and the Physics of In-
formation Vol. VIII, Santa Fe Institute (Perseus Books, Cambridge,
1990).

Zurek, W.H., Nature 341 119 (1989); Phys. Rev. A 40 4731 (1989).

Chaitin, G.J., Algorithmic Information Theory (Cambridge Univer-
sity Press, Cambridge, 1987).

Tsallis, C., J. Stat. Phys. 52 479 (1988).

Gell-Mann, M. and Tsallis, C., Editors, Noneztensive Entropy (Ox-
ford University Press, Oxford, 2004).

Darécezy, Z., Inf. Control 16 36,74 (1970).

Rényi, A., Wahrscheinlichkeitsrechnung (VEB Deutcher Verlag der
Wissenschaften, Berlin, 1966).

Hartley, R.V., Bell Syst. Tech. J. 7 535 (1928).
Umegaki, H., Kodai Math. Sem. Rep. 14 59 (1962).
Lindblad, G., Commun. Math. Phys. 33 305 (1973).

Balian, R., From Microphysics to Macrophysics; Methods and Appli-
cations of Statistical Mechanics, II (Springer-Verlag, Berlin, 1992).

Segal, L.E., J. Math. Mech. 9 623 (1960).

Wigner, E.P. and Yanase, M.M., Proc. Natl. Acad. Sci. USA, 49 910
(1963).

Ingarden, R.S. and Urbanik, K., Acta Phys. Pol. 21 281 (1962).
Onsager, L., Phys. Rev. 37, 405 (1931); Phys. Rev. 38, 2265 (1931).

Gallavotti, G. and Cohen, E.G.D., Phys. Rev. Lett. 74, 2694 (1995);
J. Stat. Phys. 80, 931 (1995).

Ruelle, D., Phys. Today 57, 48 (2004).

Prigogine, 1., Non Equilibrium Statistical Mechanics (Wiley and
Sons, New York, 1962).

Evans, D.J. and Morriss, G.P., Statistical Mechanics of Nonequilib-
rium Liquids (Academic Press, London, 1990).

Nicolis, G., Introduction to Nonlinear Science (Cambridge University
Press, New York, 1995).



34

Challenges to the Second Law

Gaspard, P., Chaos, Scattering, and Statistical Mechanics (Cam-
bridge University Press, New York, 1998).

Dorfmann, J.R., An Introduction to Chaos in Nonequilibrium Statis-
tical Mechanics (Cambridge University Press, New York, 1999).

Jou, D., Casas-Vazquez, J., and Lebon, G., Rep. Prog. Phys. 62
1035 (1999); Jou, D., Casas-Vdzquez, J., and Lebon, G., Ezxtended
Irreversible Thermodynamics (Springer-Verlag, Berlin, 2001).

de Groot, S.R. and Mazur, P., Non-Equilibrium Thermodynamics
(Dover, New York, 1984).

Evans, D.J. and Rondoni, L., J. Stat. Phys. 109 895 (2002).
Lebowitz, J.L., Physica A 263 516 (1999).

Ruelle, D., Physica A 263 540 (1999).

Prigogine, 1., Physica A 263 528 (1999).

Hoover, W.G., Molecular Dynamics, Lecture Notes in Physics 258
(Springer-Verlag, Heidelberg, 1986).

Ruelle, D., J. Stat. Phys. 95 393 (1999).
Goldstein, S. and Penrose, O., J. Stat. Phys. 24 325 (1981).

Eu, B.C., Kinetic Theory and Irreversible Thermodynamics (Wiley
and Sons, New York, 1992); Non-Equilibrium Statistical Mechanics:
Ensemble Method (Kluwer, Dordrecht, 1998).

Eu, B.C., Generalized Thermodynamics (The Thermodynamics of Ir-
reversible Processes and Generalized Hydrodynamics), Fundamental
Theories of Physics, Vol. 124, (Kluwer Academic, Dordrecht, 2002).

Zurek, W.H., Phys. Today 44 36 (1991).
Zurek, W.H., Phys. Today 46 81 (1993).
Zurek, W.H. and Paz, J.P., Phys. Rev. Letters 72 2508 (1994).

Sheehan, W.F., Physical Chemistry 2"¢ Ed., (Allyn and Bacon, Inc.,
Boston, 1970).



2

Challenges (1870-1980)

An overview of second law challenges and their resolutions is given for the period
1870-1980, beginning with Maxwell’s demon. Classical second law inviolability
proofs are critiqued and from these, candidate regimes are inferred for modern
challenges.

2.1 Maxwell’s Demon and Other Victorian Devils

Challenges to the second law began soon after it was discovered. The first,
most enduring, and most edifying of these is James Clark Maxwell’s celebrated
demon. Here we only sketch the many lives and reported deaths of this clever
gedanken heat fairy, since an adequate treatment would fill an entire volume by
itself. A superb discussion and anthology is presented by Leff and Rex [1].

Maxwell’s demon was born with a letter from Maxwell to Peter Guthrie Tait
in 1867. Maxwell’s intention was “to pick a hole” in the second law by imagining
a process whereby molecules could be processed on an individual basis so as to
engineer microscopically a temperature gradient. Maxwell writes:

... Let him [demon] first observe the molecules in [compartment] A and
when he sees one coming the square of whose velocity is less than the
mean sq. vel. of the molecules in B let him open the hole and let it



36 Challenges to the Second Law

s g i 2

L/

SN

AT

T T AR
A

N

.‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

77 e

Figure 2.1: Maxwell’s demon.

go into B. Next let him watch for a molecule of [compartment] B, the
square of whose velocity is greater than the mean sq. vel. in A, and
when it comes to the hole let him draw the slide and let it go into A,
keeping the slide shut for all other molecules...

See Figure 2.1. Maxwell’s original description is both clear and historically impor-
tant so we quote more extensively from his book [2].

One of the best established facts in thermodynamics is that it is impos-
sible in a system enclosed in an envelope which permits neither change
of volume nor passage of heat, and in which both the temperature and
the pressure are everywhere the same, to produce any inequality of
temperature or of pressure without the expenditure of work. This is
the second law of thermodynamics, and it is undoubtedly true as long
as we can deal with bodies only in mass, and have no power of per-
ceiving or handling the separate molecules of which they are made up.
But if we conceive a being whose faculties are so sharpened that he
can follow every molecule in its course, such a being whose attributes
are still as essentially finite as our own, would be able to do what is
at present impossible to us. For we have seen that the molecules in
a vesselful of air at uniform temperature are moving with velocities
by no means uniform, though the mean velocity of any great number
of them, arbitrarily selected, is almost exactly uniform. Now let us
suppose that such a vessel is divided into two portions, A and B, by a
division in which there is a small hole, and that a being, who can see
the individual molecules, opens and closes this hole, so as to allow only
the swifter molecules to pass from A to B, and only the slower ones to
pass from B to A. He will thus, without expenditure of work, raise the
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temperature of B and lower that of A, in contradiction to the second
law of thermodynamics.

This is only one of the instances in which conclusions which we have
drawn from our experience of bodies consisting of an immense number
of molecules may be found not to be applicable to the more delicate
observations and experiments which we may suppose made by one who
can perceive and handle the individual molecules which we deal with
only in large masses.

In dealing with masses of matter, while we do not perceive the individ-
ual molecules, we are compelled to adopt what I have described as the
statistical method of calculation, and to abandon the strict dynamical
method, in which we follow every molecule by the calculus. ..

This is one of the most cited passages in all of the physical literature. Several
points should be made regarding it.

e It is implicit that not only is a temperature gradient possible, but so also a
pressure gradient. The latter does not even require measurement of velocity
on the demon’s part; he merely lets molecules pass one way through his
gate, effectively acting as a gas check valve. This pressure (or temperature)
difference can be used to perform work and, presumably, can be regenerated
at will; thus, it constitutes a perpetuum mobile of the second kind.

e In principle, Maxwell’s challenge can be extended into the quantum realm.

e It is not required that the demon be alive or sentient; inanimate equipment
endowed with faculties of logic will suffice. One can even imagine biomolec-
ular machines — capable of recognizing, binding, and transporting target
molecules — performing all the essential actions of the demon [3]. In a let-
ter to Lord Rayleigh, Maxwell remarks, “I do not see why even intelligence
might not be dispensed with and the thing made self-acting” [1, 4]!

e One should not infer from the text that Maxwell was himself seriously intent
on breaking the second law; in fact, he was strongly convinced of its statistical
truth [4]:

The second law of thermodynamics has the same degree of truth as
the statement that if you throw a tumblerful of water into the sea,
you cannot get the same tumblerful of water out again. (Maxwell’s
letter to J. W. Strutt in December 1870 [4])

Nevertheless, Maxwell was farsighted enough to realize the limitations of
nineteenth century physics so as to entertain the possibility that the second
law might one day be violated. This is evident in his writing: “...we conceive
of a being whose faculties . . . would be able to do what is at present impossible

IEventually, Maxwell preferred the term wvalve over demon, the latter of which was coined by
Kelvin [5].
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Figure 2.2: Loschmidt’s demon.

to us.” It is doubtful he could have imagined our present day dexterity in
being able to manipulate individual atoms and elementary particles.

In 1869 Loschmidt proposed a variation of Maxwell’s demon (Figure 2.2). Con-
sider a volume V with gas molecules moving with greater and lesser velocities than
the mean velocity. Consider now a small compartment v adjoining V, and a gate
separating it from V. There is a nonzero, though vanishingly small, probability that
v is initially empty. If we can determine the initial conditions of all molecules in V
and the order and direction of their scattering, then the gate could be instructed
to open and close in such a way that would allow only the faster molecules into v.
Thus, one can create a pressure or temperature difference without an expenditure
of work. Clearly, this requires detailed knowledge of the initial conditions, the
dynamical scattering for all the molecules, as well as intricate gate timing. The
physical and computational infeasibility of this scheme was immediately appreci-
ated by Loschmidt and his contemporaries.

Maxwell demons can be catagorized as either sentient or non-sentient. Sentient
ones perceive (make physical measurements) and think (store, manipulate, and
erase information) to guide their molecular separations. Non-sentient demons, on
the other hand, would not necessarily perceive or think, but merely respond to
and manipulate molecules, as by natural processes. Operationally, Maxwell’s and
Loschmidt’s are sentient demons.

In a very brief article, H. Whiting (1885) [6] proposed what could be considered
a non-sentient demon in the sense that its molecular sorting is replaced by a
natural, automatic process:

When the motion of a molecule in the surface of a body happens to
exceed a certain limit, it may be thrown off completely from that sur-
face, as in ordinary evaporation. Hence in the case of astronomical
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bodies, particularly masses of gas, the molecules of greatest velocity
may gradually be separated from the remainder as effectually as by
the operation of Maxwell’s small beings.

Although Whiting proposes a sorting mechanism, he does not couple it to a work
extraction process; more than a century later such a mechanism was proposed [7].

2.2 Exorcising Demons

For 130 years, exorcising Maxwell’s demon has been a favorite act of devotion
among confirmed thermodynamicists. It was understood from its conception that
the demon’s molecular sorting was beyond the means of 19** century technology,
but since this might not always be the case, the demon posed a latent threat to
the second law which needed stamping out.

2.2.1 Smoluchowski and Brillouin

In 1912, Marian von Smoluchowski [8] demonstrated that violations of the sec-
ond law were, in principle, possible in sufficiently small systems since the usual
postulates and assumptions of thermodynamics break down as statistical fluctua-
tions become sizable. He found, however, that fluctuations are random and that
a perpetuum mobile cannot make use of them. The reason is simple: in order
to capitalize on the fluctuations, the device’s machinery must be comparable in
size to the fluctuations themselves, in which case it is subject to the same type
of statistical fluctuations it is trying to harness. (Similar arguments are made by
Feynman with regard to his celebrated pawl and ratchet device [9].) Modern com-
puter simulations of classical particles and gates strongly support Smoluchowski’s
exorcism [10].

Importantly, Smoluchowski’s analysis omitted quantum effects like quantum
correlations and spontaneous processes that figure prominently in several modern
second law challenges (§3.6, §4.6). For example, the state of the demon — repre-
sented possibly by a two-level quantum system in two topological conformations,
corresponding to open- and closed-gate configurations — can be highly correlated
with the state of the molecules that it is manipulating. Consequently, the entropy
of the (molecules + demon) together is not equal to the sum of entropies of the
demon and molecules considered separately. (This violates the standard thermo-
dynamic property of additivity.) In modern parlance, the states of the demon and
molecules are strongly entangled. Thus, the traditional view that the demon is
crippled by its stochastic environment is not justified.

Since it was discovered, each facet of the demon’s behavior has been deeply
scrutinized for physical reasonableness. Even the most mundane activity of seeing
is not as easy for the demon as one might think. In an ideal, isothermal black-
body cavity, the radiation spectum is uniform and spatially isotropic; that is, in
principle everything looks the same in all directions. Individual objects can be
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discriminated only if their temperatures are different from the background, or if
they are illuminted by a superthermal radiation source (e.g., a flashlight).

If we imagine a demon at the same temperature as the cavity?, then, without
a flashlight, he is unable to see the molecules he intends to sort. He is blind. The
flashlight, however, generates entropy. As described originally by Brillouin [11],

The torch is a source of radiation not in equilibrium. It pours negative
entropy into the system. From this negative entropy the demon obtains
“informations”. With these informations he may operate the trap door
and rebuild negative entropy, hence, completing a cycle:

negentropy — information — negentropy.

We coined the abbreviation “negentropy” to characterize entropy with
the opposite sign. ... Entropy must always increase, and negentropy
always decreases.

Brillouin’s analysis, though compelling, suffers from multiple shortcomings. First,
thermodynamic entropy is conditioned by the validity of the second law. Thus,
his analysis assumes the validity of the law it attempts to rescue. Second, the
statistical entropy increases only after a proper coarse graining procedure, which
is not unique. Hence, the statistical entropy increase is not unique and, thus,
can hardly be directly identified with the thermodynamic entropy. Third, this
defense of the second law is somewhat of a straw man since there are numerous
non-sentient demons that do not require active perception for their successful
operation. Controversy regarding the demon’s eyesight continued into the 1980’s
[12, 13, 14].

2.2.2 Szilard Engine

In 1929, the demon was launched into the information age by Leo Szilard. He
envisioned a heat engine consisting of a cylinder divided by a partition/piston
with a one-molecule working fluid (Figure 2.3). The piston is driven by the sin-
gle molecule; however, in order to achieve a thermodynamic cycle the molecule’s
position must be coordinated with the placement of the piston. If successful, this
cycle would allow cyclic extraction and conversion of heat from a surrounding heat
bath into work, this in seeming violation of the second law.

Szilard correctly identifies three important and previously unappreciated as-
pects of the demon — measurement, information, and memory. Serendipitously,
the demon helped lay down the foundation of modern information theory. Szilard
finds that, in order to comply with the second law, the measurement process must
entail a compensatory entropy production of S = k1n(2). This ’bit’ of entropy and
information creates a new link between these two seemingly disparate concepts,
later established more solidly by Shannon [15] and others. It is often mistakenly
assumed that Szilard demonstrated that the second law prevails over the demon;
rather, his principal result was derived assuming the second law was absolute.

2If he is not at the same temperature he plays right into the hands of the second law.
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Figure 2.3: Szilard’s engine.

Over the last 75 years a tremendous amount has been written on Szilard’s
engine and the informational aspects of Maxwell’s demon [1]; notable researchers
include Landauer, Bennet, Penrose, Zurek, Popper, and Feyerabend. It is now
the consensus that memory erasure is the tragic flaw of the sentient demon. A
finite device, operating in an indefinitely long cycle, which must record informa-
tion about individual molecules it processes, must eventually erase its memory.
Erasure creates entropy which at least compensates for any entropy reduction ac-
complished by the rest of the thermodynamic cycle. In other words, the second
law is sustained. One might say the sentient demon is just too damn smart for his
own damn good. Still, legions of his dumber, non-sentient comrades remain alive,
well, and on the loose.

2.2.3 Self-Rectifying Diodes

It is well known that electrical diodes can be used to rectify ac voltage fluctuations,
rendering dc voltages. It is also well established experimentally and theoretically
that electrical systems exhibit thermally-induced voltage fluctuations. For in-
stance, in the frequency interval (f — f+ Af) the white noise voltage fluctuations
in a resistor are given by the Nyquist theorem as (AV?) ~ 4REKTAf, where R is
resistance and k7" is the thermal energy. Given these observations, it is natural to
wonder whether diodes can self-rectify their own thermally-induced currents and
voltages, thus behaving as micro-batteries. If so, then if arranged suitably they
should be able to generate usable power — were it not for the second law [16]. The
possibility of self-rectifying diodes stimulated significant interest over the twenty
year interval 1950-1970 [16-20]. The consensus is that diodic self-rectification is
impossible, but not all loopholes appear to have been closed [20]. The subject
has lain dormant for 30 years and to our knowledge no experiments along these
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lines have been conducted. Recently, diodes have been invoked in other second
law challenges [21].

In summary, Maxwell’s demon and its many spawn engaged some of the bright-
est minds of the 19" and 20*" centuries. Maxwell probably had little inkling how
much moil, toil, and trouble his sentient little devil would cause, nor how abun-
dant its intellectual fruits would be. The sentient demon is now either dead or
comatose; however, starting 25 years ago with the proposals of Gordon and Denur,
a new wave of non-sentient demons has arrived, sidestepping the critical failures
of the sentient variety. These are often phrased in terms of Maxwell’s demon not
necessarily because of any special similarity to it, but to honor this rich vein of
scientific history and scholarship. Moreover, an alignment with Maxwell helps fend
off the negative connotations associated with the term perpetual motion machine.
(After all, Maxwell’s demon is a perpetual motion machine, but one with pedi-

gree.)

2.3 Inviolability Arguments

The second law has no general theoretical proof. Except perhaps for a few
idealized cases like the dilute ideal gas, its absolute status rests squarely on em-
pirical evidence. As remarked by Fermi [22] and echoed by others, “support for
this law consists mainly in the failure of all efforts that have been made to con-
struct a perpetuum mobile of the second kind.” Certainly its empirical support is
vast and presently uncracked; however, one must be careful not to fall prey to the
primary fallacy of induction pointed out by Hume: That which was true in the
past will be true in the future3. Induction is especially dicey in science when new
physical regimes and new phenomena are incorporated into existing paradigms.
One would be hard-pressed to name any physical theory, concept, law or principle
that has not undergone major revision either in content or interpretation over the
last 100 years. For example, the list of energy types has been updated several
times (e.g., with dark energy, vacuum energy, mass energy); angular momentum
was quantized (h); classical mechanics became a limiting case of quantum mechan-
ics (Bohr’s correspondence principle); Galilean kinematics and Newtonian inertial
mechanics became the low-velocity limit of special relativity; Newtonian gravity
was interpreted as the weak-field limit in general relavitity, which itself is now
considered the classical limit of a much-anticipated theory of quantum gravity. If
one even casually reviews the history of science, particularly over the last century,
one should not be surprised that the second law is now in jeopardy. Quite the op-
posite, one should be more surprised that it has not been put in jeopardy earlier
since all the basic science for the modern challenges was in place 40-50 years ago.
The damning question is this: Why has it taken so long for its absolute status to
be seriously questioned?

3 At the very least, progress and novelty in the world depend on this fallacy being false.
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2.3.1 Early Classical Arguments

Over the last 150 years, many attempts have been made to derive a general proof
for the second law. All have failed. Among early attempts, Boltzmann’s H-theorem
(1872) is deservedly the most celebrated [23]. In it, the quantitiy H is defined
H =3, P;In(P;) = (InP;), where P; is the probability of finding a system in
an accessible state ¢. Boltzmann showed that dd—i] < 0, and only at equilibrium
is ‘fi—i] = 0. Clearly, H is related to the standard statistical (not thermodynamic)
entropy as S = —kH. Though suggestive, the H-theorem does not constitute a
second law proof, but it does serve as a fundamental bridge between microscopic
(statistical mechanical) and macroscopic (thermodynamic) formalisms.

Early objections to the H-theorem were raised by Loschmidt (1876-77) and
Zermelo (1896). Loschmidt pointed out that since the laws of physics upon which
the H-theorem is based are time symmetric (reversible), it is not clear that the
H-function should model nature in displaying time-asymmetry* [24]. Zermello
argued, based on Poincaré’s recurrence cycles, that systems should display quasi-
periodicity; that is, a system’s trajectory in 6N-dimensional phase space should
eventually pass arbitrarily close to previously visited points, which can represent
lower entropy states, in which case the system will have spontaneously evolved
toward lower entropy, in violation of the second law [25, 26]. These objections
have been largely overcome through proper appreciation of the truly large number
of complexions available to thermodynamic systems. For macroscopic systems, the
number of complexions at equilibrium is so much greater than the number even
slightly away from equilibrium that nonequilibrium states are effectively never
seen once equilibrium is achieved. Their relative phase space volume is essentially
zero®. A commanding discussion of these issues is presented by Lebowitz [27].
Ultimately, the H-theorem is too limited in purview to serve as a general second
law proof; however, it is a rallying point for the faithful.

The second law is emergent in nature. This means it does not bend other
physical laws to its will, but rather, arises statistically from the interplay of multi-
ple particles that themselves are governed by more basic laws like conservation of
energy, linear and angular momentum. The second law must accommodate these
more fundamental laws, not vice versa. Perhaps it should be considered not a law,
but rather a principle or meta-law. In fact, if the second law were to be derived
from more basic principles, properly, it should cease to be law. After all, laws are
axioms of science. They are not proved, they are observed; they are recognized
and assented to. For the present, the second law is absolute, not because it has
been proven, but because it is observed to be so.

4By simply reversing the direction of all particles (pi — —pi) — certainly a physically
acceptable prescription — the system spontaneously reverts to lower entropy states.

5Let’s say the average number of air molecules in a faculty member’s office is roughly
Ny, = 3.3 x 1026. For a fixed total system energy, consider two spatial configurations of the
air: (i) smoothly distributed through the entire volume; and (ii) smoothly distributed in one
half this volume. Assuming equal a priori probability, the ratio of the number of complexions
in configuration-(i) to configuration-(ii) is 2Vfe = 93:3x10%¢ 1102 Clearly, the number of
complexions for configuration-(i) so far outnumber those for configuration-(ii) that (ii) cannot be
expected to spontaneously arise. Even small perturbations away from equilibrium are extremely
unlikely.
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2.3.2 Modern Classical Arguments

Perhaps the best known modern arguments in theoretical support of the second
law are those layed out by Martynov [28]. In an isolated classical systems there are
at least two integrals of motion: the total energy of the particles and the “phase
volume occupied by the system” AT'. It follows that In(AT') is also an integral of
motionS.

It is reasonably assumed that the total energy E(ry,...,rn,P1,...,PN) and
In(AT") are the only two independent integrals of motion. (At this point In(AT") has
not been identified with entropy.) However, the thermodynamic entropy — whose
existence follows from the presumed validity of the Second law — provides quasi-
equilibrium isolated systems with another integral of motion. As an integral of
motion, entropy should be additive”, in which case it must be a linear combination
of E and In(AT"). Total energy is excluded on grounds of physical intuition, thus
the thermodynamic entropy is identified with kIn(AT), by assumption. (The
Boltzmann constant k follows from a properly chosen temperature scale.) For
macroscopic systems, the phase space volume associated with equilibrium is far
greater than the volume for the system out of equilibrium. Hence, up to an additive
constant (which, presumably, can be determined via the third law), the entropy
can be written S = kIn(AT") = kIn(Q2), the Boltzmann entropy, where 2 is the
total number of microstates available to the system.

There are at least two major weaknesses in this development of entropy on the
way to the second law. First, entropy is arrived at under statistical assumptions,
namely ergodicity, applied to ensembles, whereas it is understood that thermo-
dynamics speaks to individual systems. Furthermore, the ergodic hypothesis is
not generally valid beyond equilibrium. As an illustration, consider an ensemble
consisting of a single quantum system isolated from its surroundings. This, and
only this, would render this first concern moot. On the other hand, if the system is
initially out of equilibrium, its thermodynamic entropy should increase with time
in accord with the second law. However, if the state of the system is initially pure,
it remains so forever, as discussed previously (§1.3). Moreover, in this form of
p(t), the statisical entropy St remains constant for all times, in contrast with
the expected behavior of the thermodynamic entropy Si;. One might argue —
as many authors implicitly or explicitly do — that a coarse graining procedure
should be invoked to guarantee Sy, increases with time. However, there appears
no compelling physical reason to coarse grain a single system in a pure state.
Additionally, this procedure would not be unique. Subjective coarse graining is
physically dubious.

A second weakness in this development is that additivity as a general as-

6In phase space, an individual system is represented by a single point whose volume is zero.
Hence, AT should be understood as the phase space volume of an ensemble of points. This, of
course, invites criticism for equating thermodynamic with statistical entropies.

"Total energy should be additive if all sub-systems are statistically independent (macroscopic,
separated well in space, and all interactions short-ranged). Since AT'g = AT'g-AT'¢, one expects
In(AT") also to be additive. Regarding thermodynamic entropy, its additivity can be deduced
from the assumed equality of sub-system temperatures and the additivity of heat increments §Q.
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sumption is suspect. Additivity for the statistical entropy is acceptable provided
that any two subsystems of the system in question are statistically independent.
Equally well for thermodynamic entropy, additivity can be deduced from the ad-
ditivity of heat increments at equilibrium. However, additivity is violated when
subsystems are correlated, as in case of the Maxwell gate and the state of the
gas with Maxwell’s demon. As a result, systems with high degrees of correlation
(entanglement) are prime candidates for second law challenges.

A different approach toward entropy and the second law has advantages over
this last method and avoids some of its pitfalls [28]. It involves no formal coarse
graining; it provides a systematic way how to get from the Liouville equation to
a chain of the BBGKY-hierarchy® of simpler kinetic equations for particle dis-
tribution functions; and it illustrates how, in the thermodynamic limit, the final
member of the BBGKY family of equations — the Liouville equation — becomes
irrelevant from the point of view of the lowest equations of the hierarchy®. This
method could, in principle, be adapted the quantum case, however, the necessary
formalism has not yet been worked out.

Consider a classical system of N particles. For simplicity, we ignore problems
associated with indistinguishability and ascribe to all particles the same micro-
scopic parameters (e.g., mass, charge). One first defines the distribution function
in the phase space of N particles, Gy, by

N
Gy (rr,. o on Py P ) = ([T 600 —25(0)d (s —p; (1)),

Jj=1

1

fla,p,t) = VNN

(2.1)
where r;(t) and p;(t) designate spatial coordinates and momenta of the j-th par-
ticle, while the average (...) denotes ensemble averaging over, for instance, their
initial values. V is the total volume of the system and P = v27mmkT'. Since the
system might be out of equilibrium, 7' can be a fictious temperature not neces-
sarily connected with the initial state; it establishes proper units for momenta.
All quantities — entropy included — are calculated from the ensemble, not the
individual system.

There are, in general, at least two conserved quantities for the N-particle sys-
tem if it is isolated from the surroundings, and if the forces between its constituent
particles are conservative. These are the global (total) energy (as determined by
the system’s Hamiltonian Hy) and entropy. The global energy is:

E(N) = <H(N)(I'1,~«-;rN7p1;~"apN)>

1 too
= W/rldr]v/ dpl---deH(N) Xg(N)

B me(r,t) 3 1
= /vdr {n(nt)T + §n(r,t)@(r,t) + 5(@)} . (2.2)

8usually Bogolyubov, Born, Green, Kirkwood, and Yvon

9The BBGKY hierarchy of equations, on the other hand, determines the basic macroscopic,
phenomenological laws of continuous media, including those of thermodynamics.
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Here (®) is the averaged potential energy for the mutual interaction of the particles
while n(r,t), c(r,t), and O(r,t) are the ensemble-mean local particle concentra-
tion, macroscopic velocity, and temperature'®. The five hydrodynamic parameters
n(r,t), ¢(r,t), and O(r,t) are basic parameters through which all time-dependent
macroscopic parameters can be expressed during slow relaxation of the system to
equilibrium.

The global (total) entropy is given by

k +oo
S(N) = 7VN7'P3N /dr1 ...dI‘N/ dpl...de ln(g(N)) X Q(N) (23)

That both F(y) and S(y) are integrals of the motion can be verified through the
Liouville equation:

0 KUy Gy P G

j=
Here Uy is the total interaction energy of the N particles.

At this point, a key concept is the correlation sphere. This is a sphere around
any particle beyond which no correlations exist between the particle and those
lying outside the sphere. Clearly, this is a well defined notion for systems like
gases and liquids, but it becomes problematic for systems demonstrating long-
range order like solids and self-gravitating systems. For simplicity we omit these
latter cases. The notion of the correlation sphere allows introduction of the I-
particle distribution functions

G1,.N =GN (2.5)

For all particles 1, .. .1 inside the correlation sphere, one has G1,...1 = G1 . 1/141,..~,
where Gi . /i41,..n designates the distribution function of the first [ particles
provided that the (I + 1)-th up to the N-th particles have their coordinates and
momenta correspondingly fixed and lying outside the correlation sphere. Using
the definition (2.5), one obtains

0G1, .1 : p; 0Gi,.. OU... 0Gi, .
T_Z{_—. I'j + al‘j . Bpj +

Jj=1

l
no [0Pju41 001,41 ) B
> {7)3 / o, 9p; di+1)¢;  1=12,...N. (2.6)

j=1
Here we have used the notation

Ui,..i= Z Pij (2.7)

1<i<j<I

10Energy units given by kinetic energy of the thermal motion with velocities measured with
respect to c(r,t).
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for the sum of the pair interactions of particles 1,...,l. The set (2.6) is the desired
BBGKY hierarchy of the coupled particle distribution functions. The last equation
of the hierarchy (for I = N) reproduces the Liouville equation (2.4).

The thermodynamic limit is now taken by increasing the particle number with-
out bound (N — o). This limit must precede any reasoning connected limits of
physical time since otherwise, we encounter problems connected with reversibility
of the theory. In the thermodynamic limit, the last equation of the hierarchy (the
Liouville equation) disappears, thus becoming irrelevant for local dynamics of the
system. Likewise, the total energy () and total (global) entropy S(ny become
irrelevant for short-range forces; they are proportional to N, as one expects for
extensive thermodynamic variables, diverging to infinity in the thermodynamic
limit''. Now, in order to investigate the validity of standard equations determin-
ing, for instance, entropy, one must introduce corresponding local quantities anew
and determine the relevant equations for their time-development with the BBGKY
set (2.6). Using a proper definition of the entropy density s(r,t) and entropy flow
density I(*)(r,t), one obtains [28]

)
n(r,t)a—j +divZ(®) = ), (2.8)

where the right hand side is the entropy production term. This equation is the
entropy (non)conservation law. Note, however, that the local entropy has no direct
connection to a global entropy that can be compared with the thermodynamic
entropy. Thus, in the thermodynamic limit we face the loss of meaning of such
global and indispensable notions as the total energy, entropy, and the Liouville
equation.

The definition of individual terms in (2.8) is complicated and results from an
interplay of physical intuition and formal proof. The result is that in (2.8),

+00 +00 W
s=Y s, T=>"706") (2.9)
=1 =1

and similarly for the source term ¢(*). Here, for instance, s*) is the contribution
of the [-th order correlations. Specifically, the local correlation entropy is

1 [*t<d
n(r,t)sW(r,t) = —knél—'/ % /W1,2‘..lg1,2...ldr2dp2 ...drdp,  (2.10)

where

G1 =exp(w1), Giz =G1G2exp(wi2), Gi23 = G1G203 exp(wiz +wiz +was +wias)

(2.11)
and similarly for other terms in (2.8). One can argue physically that the sums in
(2.9) converge rapidly once [ exceeds number of particles in the correlation sphere.
Insofar as one wishes to reformulate the second law in terms of local entropy

1 One could, in principle, work with total energy or entropy per particle, but, in general, such
quantities have limited explanatory utility for nonequilibrium systems.
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increase, one should prove that the local entropy production term ¢(*) > 0. This
condition, however, cannot be established generally since local decreases in entropy
are possible, such as in crystallization. Thus, this non-negativity condition should
apply at least ’in most places’, so that global entropy increase can be preserved.
Unfortunately, no general proof of this condition is known at this time. The
strengths of this sophisticated formalism notwithstanding, the non-decrease in
entropy and the drive toward equilibrium — the validity of the second law —
remains unresolved.

2.4 Candidate Second Law Challenges

Thermodynamics, as it applies to the second law, pertains to macroscopic
systems consisting of a large but finite number of particles N. The microscopic
physics, which presumably is time reversible, is hidden by thermodynamic postu-
lates and caveats. In contrast, statistical mechanics grapples with the underlying
microscopic physics and becomes meaningful only in the thermodynamic limit,
requiring that (N — oo, V — oo, and % = (, finite) in such a way that local
properties (e.g., particle and mass densities) remain constant. It is remarkable
— or distrubing — that such different formalisms purport to be universally valid
for the same general phenomena when, for instance, their underlying definitions,
like entropy, canot be consistently and unambiguously reconciled. The standard
arguments [28, 29| face problems with the subjectivity of coarse graining, as well
as those connected with suppression of global conservation laws in the thermody-
namic limit. The use of correlation spheres is formally important, but problematic
when long-range order is present, particularly when applied beyond simple liquids
and gases, into solid state systems, and ones with nonextensive fields (gravita-
tional, electric fields). Dovetailing local properties with global ones remains a
theoretical challenge. Boundary conditions present further complications.

The foregoing critique of contemporaty thermodynamics and statistical me-
chanics offers inspirations for candidate systems for second law challenges. The
following are our best guesses where 'the action’ might be.

e (Classical systems that display long-range order under equilibrium conditions;
systems that undermine the notion of correlation spheres; non-extensive sys-
tems; systems with strong boundary effects. Natural examples of these might
include solid state, self-gravitating, and plasma systems. The several USD
challenges fall under this rubric (Chapters 6-9).

e Quantum systems that display long-range order in the form of quantum
entanglement'? As an illustration, consider a light beam split in two by a
half-silvered mirror [30]. Formally, the entropy of the two split beams should
exceed that of the single beam, if beam-splitting is an irreversible operation.

12In general, quantum systems have not been vetted as extensively or thoroughly for second
law compliance as have classical systems.



Chapter 2: Challenges (1870-1980) 49

However, the two beams can be optically recombined into a beam indistin-
guishible from the original single beam. This reunion would seem to violate
the second law by reducing entropy, but it does not. The split beams are
in fact not independent since they are connected by mutual phase relations.
Hence, the total entropy of the two beams together is not equal to the sum
of their entropies calculated as if the beams were mutually independent. The
notion of relative phase does not arise in classical physics, but it is an in-
tegral aspect of quantum mechanics. This type of correlation between and
among subsystems is known as quantum entanglement. Quantum challenges
by Cépek, et al. (§3.6), and Allahverdyan, et al. (§4.6) bank on these. In
principle, mutual correlations can persist even in the classical realm'3.

e Systems operating in extreme classical or quantum regimes in which novel
collective behaviors arise!. For example, challenges by Keefe (§4.3) and
Nikulov (§4.4) rely on the differences between classical and quantum statis-
tical behaviors of electrons at the superconducting transition in mesoscopic
structures.

e Systems whose statistical entropy (ensembles) is different from their ther-
modynamic entropy (individual systems); situations where the time devel-
opment of individual systems in an ensemble differ appreciably from the
ensemble average behavior, e.g., particles in the tail of a classical distribu-
tion.

e Systems not in equilibrium Gibbsian states. Formally, the classical regime
is the high-temperature limit of the quantum one, so we can treat both
simultaneously. The Allahverdyan and Nieuwenhuizen theorem (§1.2) states
that for closed quantum systems at equilibrium, no work can be extraced
by any periodic variation of external parameters. By equilibrium state it is
meant the state with the canonical (Gibbsian) form of the density matrix.
Thus, one might look for candidates among systems that are definitely not in
the equilibrium Gibbsian state. This provides two options: (i) open systems
where external agitation keeps the system out of equilibrium!®; or (ii) open

systems where sufficiently strong interactions with the bath drives the density

matrix away from the Gibbsian form. (Combinations of these mechanisms
is also admissible.)

The Gibbsian form of the density matrix

D = exp(—3Hs)
Trs(exp(—BHs))

(2.12)

13Imagine two newlyweds in their first apartment. Although, in principle, each might be found
with equal and independent probability in any room, there will be strong correlations between
their movements and both are likely to be found in the same room simultaneously more often
than by pure chance. They are highly entangled — and perhaps more so in certain rooms than
in others ... [Vincent, M., priv. commun., (1998)].

14 Almost by definition, eztreme regimes are ones that have not been carefully vetted for second
law compliance.

15Preferentially, this agitation should be periodic in time in order to obtain a time-periodic
gain in useful work, in accord with the Thomson form of the second law.
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is currently known to describe well the equilibrium state of quantum sys-
tems in situations when the system-bath coupling is negligible (Hg being
the corresponding system Hamiltonian). Thus, candidate systems would be
those for which coupling to the bath is non-zero (finite). Presumably, strong
coupling could accentuate such effects. Still, arbitrarily small but non-zero
system-bath couplings should be enough to test second law status.

Systems reminiscent of the Maxwell demon, with gates opening and closing
via quantum processes; self-sustained correlations (entanglement) between
the states of the system and gate that do not require external measurement,
either by external agents or agitation. In other words, the extended system,
consisting of the working medium and the gates can continuously perform
its internal 'measurements’ without the external influences. The issues of
entropy connected with measurement, memory, and erasure need not arise'®.
Classical systems reminiscent of Maxwell’s demon have been advanced by

Gordon (§5.2), Denur (§5.3), and Crosignani (§5.4).

There seem to be a number of avenues open “to pick a hole” in the second law.

The last 20 years represent a renaissance in this endeavor begun by Maxwell over
135 years ago.

In summary, we have cursorily reviewed prominent second law challenges from

Maxwell (1867) up to roughly 1980, thus setting the stage for the modern chal-
lenges. We have briefly critiqued standard arguments in support of the second law
and, from their shortcomings, identified several physical regimes where the second
law might be tested for violability.

16Systems with Maxwellian gates are not the only quantum candidates for second law chal-
lenges; more typical quantum processes could also suffice (§3.6).
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3

Modern Quantum Challenges:
Theory

Quantum formalism is developed and applied to a series of quantum theoretic
challenges advanced by Cépek, et al. A primary requirement of these systems is
that their coupling to the thermal bath not be weak.

3.1 Prolegomenon

Experiments on real systems are always carried out under conditions that can-
not be characterized as limiting cases. For instance, experimental temperatures
may be arbitrarily low, but never zero. Or, investigating the quantum mechanical
ground state of macroscopic systems may be useful, but it might not lead to rel-
evant results applicable at finite 7. In a similar way, experimental temperatures
may be high in the standard sense, but this does not necessarily mean full appli-
cability of classical physics in the sense of the disappearance of quantum effects.
Recall that, according Bohr correspondence principle, classical physics becomes
fully legitimate only in the infinite temperature limit, while at room or even much
higher temperatures many macroscopic quantum effects can survive, like ferro- or
diamagnetism.

Similar problems appear with characteristics like external fields or phenomeno-
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logical coupling constants like deformation potentials in solids. Such constants may
be manipulated by, say, external pressure. However, real first-principle coupling
constants have values that are not subject to variation. Hence, perturbational
treatments in powers of such coupling constants that are based on assumptions
of possible power-expansions in terms of such constants cannot be well checked
by changing their values in any interval. What is, however, more relevant is that
values of such constants are never infinite or zero. In fact, in real theoretical mod-
eling, we usually and implicitly assume that in any given model, we include only
mechanisms that seem relevant or decisive. Finally, finite (non-zero) values of the
constants complicate even the determination of whether we can apply obtained
models or theories in given situations. In other words, we say that a given theory
is, for instance, the weak-coupling one. It is stressed that this characterization pre-
serves its good mathematical meaning only in the sense that a physical prediction
gives a good quantitative character in the limiting sense that the relevant coupling
constant is mathematically limited to zero. To be specific, ensemble theory in sta-
tistical physics, which is connected with the Gibbs canonical or grand canonical
distributions permitting statistical introduction of temperature, is mathematically
meaningful only in the limiting sense of weak coupling, i.e., in the mathematical
limit of the coupling constant between the system and the reservoir (bath) being
exactly zero.

Experiment never corresponds to such an ideal mathematical description since
the system-bath coupling constant must always be considered non-zero (though,
perhaps, quite small). Recall that in this opposite case — i.e., no system-bath
coupling — the system and bath would never fully establish mutual thermal equi-
librium. Hence, in practice, we are forced to introduce regimes of applicability
of such mathematically well-formulated limiting statements, introducing sharp in-
equalities (or even exact order of limiting processes). In this section, we list several
requirements for theories aspiring to direct comparison with experiment. This ex-
ercise is often considered trivial and, thus, is often ignored. However, because of
the potentially important conclusions, these requirements should be made clear.

In our opinion, theoretical treatments wishing to be taken seriously in poten-
tially important areas like this should fulfill the following minimum criteria:

e They should make clear statements about the effect observed in the model
considered, with detailed specification of the area of physical parameters
involved. Proper definition of the physical regime is very important since
the usual weak-coupling regime is usually too restrictive.

e They should clearly indicate the role of the initial conditions, which should
— with the exception of certain basic parameters, like initial temperature
— be minor in stationary situations or, more generally, after the transient
initial period of time when details of initial conditions might play a role.
(This requirement is related to the Bogolyubov principle of decay of initial
correlations.)

e The statements should be related to the macroworld in which thermodynam-
ics governs as a universal theory. For that, careful taking of the thermody-
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namic limit of the bath is critically important but, on the other hand, may
help to turn microscopic statements to macroscopic ones.

e The considerations should include discussion of stability of the results with
respect to other mechanisms or possible higher order effects.

3.2 Thermodynamic Limit and Weak Coupling

There is perhaps one universal feature distinguishing all modern second law
challenges. It is that the interaction of the system with its surrounding — i.e., the
thermodynamic bath — cannot be weak. In order to explain what weak coupling
means, let us introduce some basic concepts. Asserting that classical physics is
formally a specific (high-temperature) limiting case of the quantum one, we can
limit our discussion to the quantum case.

The first step in considering any problem in statistical physics is to define the
system and the rest of the ‘universe’, i.e., the bath or reservoir. Imagine that we are
interested in some electronic property of a crystal. Realizing their indistinguisha-
bility, the many electrons may be taken as the system of interest, while the bath
would include atoms of the lattice (forming a basis for the static crystal potential,
phonons, etc.), contacts, crystal holder, the experimental apparatus, laboratory,
etc. Two things should be stressed:

e There is always an arbitrariness in the choice of what is to be considered
the system. For instance, part of the bath could be joined with the system,
thus forming an extended system with which to proceed. This might have
some advantages connected with the fact that the system Hamiltonian Hg
is usually exactly diagonalized. Hg might thus incorporate a part of the
surroundings with important correlations with the (more restricted) system,
which might be important for the problem considered. On the other hand,
the increased size of the system correspondingly increases the technical prob-
lems connected with the diagonalization of Hg. The extreme choice might
be to choose the whole (system + bath) complex as an extended system. In
this case, all the correlations would be properly considered upon diagonal-
ization of Hg. On the other hand, the technical problems associated with
the diagonalization of Hg are the very reason why we split off part of the
complex as our system in the restricted case, understanding the rest of the
complex as the bath. Hence, it is a joint matter of personal taste, skill, and
optimization of the endeavor that determines what is taken to be the system
and what is taken to be the bath.

e For any choice of the system (and bath), the (system + bath) complex must
be temporarily isolated from the rest of the universe. If not, there would
be no possibility of writing down the Hamiltonian for it. In this case, there
would be no possibility of treating its time development via the Schrédinger
equation or the Liouville equation via its density matrix. Of course, this
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assumption of isolation from the rest of the universe is not realistic. That is
why one must choose the bath to be sufficiently extended. Moreover, when
the time intervals considered increase, one must also increase the size of the
bath. This is one of two reasons why the thermodynamic limit of the bath
must precede any long-time limit considered. The second reason is connected
with the necessity to mimic naturally occurring finite widths of overlapping
energy levels by a continuum of energy levels.

There is an important consequence of the infinite (thermodynamic) limit of the
bath, specifically, we get rid of the so-called Poincaré cycles [1]. To unpack this no-
tion, realize that for any finite (system + bath) complex, the starting Schrodinger
or Liouville equations are reversible, while the behavior of realistic macroscopic sys-
tems is clearly irreversible. (See von Neumann entropy (§1.3).) The irreversibility
of the time-development appears in our formalism' owing to the fact that Poincaré
cycles — the quasi-periodic return of system observables to their initial values dur-
ing the course of free time evolution of the (system + bath) complex — develop
very quickly to infinity with increasing size of the complex.

This procedure of increasing bath size does not necessarily appear explicitly.
However, since the theory itself is not reversible, it must contain sources of ir-
reversibility. It is not important, for instance, whether there is thermalization
of particles at an isothermal surface, or relaxation of parts of the system (e.g.,
molecular groups) playing a role of the Maxwellian gates to more energetically ad-
vantageous configurations. Irreversibility could not appear without increasing the
size of the (system + bath) complex to infinity. Clearly, we want to treat the sys-
tem that we have initially specified, which is finite; thus, it is the bath whose size
is increased. So, what specifically is the detailed definition of the thermodynamic
limit of the bath? The procedure is as follows:

e Choose the system as a finite number of particles and specify the type (not
the size) of the bath and its coupling to the system. This includes, inter
alia, specification of type of forces among all particles.

e For any finite bath size, specify the initial state of the (system + bath)
complex in such a way that with the ensuing increase in the size of the
bath to infinity, its macroscopic intensive characteristics remain fixed (e.g.,
mass density, particle density, energy-density, or temperature?, macroscopic
motion with respect to the system).

e Then express the quantity of interest. It must be finite. Often it is simply
the density matrix.

e Now increase the size of the bath to infinity for any time ¢ of the time-
development investigated (e.g., the Liouville equation for the density matrix
of the (system + bath) complex). Insofar as all the interactions are short-
ranged, there is no reason for any divergences (infinities) in this limit.

Hn fact, this is the general formalism of statistical physics.
2as far as this notion may be, in the given situation, well introduced
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e The resulting value of the system quantity of interest is then the quantity
required for direct comparison with experiment as a function of time. Or, as
in the case of the density matrix of the system, it is used to investigate the
time development of the system for a broader class of system observables.

This procedure is generally accepted. To have a solid basis for further discus-
sion, let us perform the above reasoning with application of the thermodynamic
limit of the bath on a level of the density matrix of the system pg(t). Though
we shall later return to the formalism, here we will derive two basic equations
replacing, on the level of pg as an operator in the Hilbert space of the system, the
Liouville equation for the density matrix of the (system + bath) complex ps+p(t)
in the Hilbert space of the (system 4 bath) complex together. Such equations
bear the name of the Generalized Master Equations (GME). Because of a degree
of arbitrariness, they are infinitely many of them (both convolution and convolu-
tionless types) according to the specific choice of projection and information we
are interested in. We start from the Liouville equation for the complex pgsy p(t)

d 1

i ps+p(t) = 2 H, psip(t)] = Los+s(t). (3.1)
We always assume a time-independent Hamiltonian. This means that there are no
external time-variable fields acting on the system. If there are, the sources of such
fields would have to be included in our extended (system + bath) complex which
would restore the time-independence in (3.1). Further, we have introduced the
so-called Liouville superoperator L. .. = %[H ,...]. If we remember that operators
are general prescriptions ascribing to (wave) functions of the corresponding Hilbert
space other functions in the same space, we see that general superoperators (£ is
one such example) may be understood as prescriptions ascribing to any operator
A another operator; for the Liouville superoperator, it is the operator %[H ,A]. In
fact, the space of all operators (acting on functions in the Hilbert space of wave
functions) is formally, from the mathematical point of view, a Hilbert space. Cor-
respondingly, the set of all superoperators, acting on operators in this Hilbert space
of wave functions, also form such a Hilbert space. Corresponding scalar product
of two operators A and B may be introduced in infinitely many ways; the simplest
one (though not the most advantageous) is (A, B) = Tr(A'B). The latter Hilbert
space of operators is then often called the Liouville space and superoperators are
then nothing but operators in the Liouville space.

Arbitrary superoperator P is called projector or projection superoperator if it
has idempotency property, i.e., that

P2 =P. (3.2)

In general, such projection superoperators are used to reduce information required.
Realize that without such a reduction, upon increasing the size of the bath to
infinity, one would soon encounter an information catastrophe: an overabundance
of information that would hinder the use of it. For example, one could imagine
the projection of the Euclidian three dimensional vector space onto the x-y plane.
Projecting any position vector twice yields the same result as a single projection
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only. For illustration in our Hilbert and Liouville space, one can use the Argyres-
Kelley projector [2]

P...=pBPTrp(..), Trpp®=1. (3.3)

Arbitrariness in the choice of p? in (3.3) is the source of arbitrariness in the form
of the GME mentioned above. Also worth realizing is that if in general P is
a projector, (1 — P) is also a projector since (1 —P)2 =1 —P. So, if P is a
projection on an interesting part of information contained in psyp(t), 1 — P may
be interpreted as a projection on an uninteresting part thereof.

Let us take the form of (3.3) as simply an illustration, but let us proceed with
a general time-independent projector P. From (3.1), we get

.d
i Ppsp(t) = PLPps+p(t) + PLA = P)psin(t),

%(1 —Plps+B(t) = (1 =P)LPpssp(t) + (1 = LYP(1 = P)pstp(t).  (3.4)

Solving the second equation of (3.4) for the ‘uninteresting’ part (1 —P)psyp(t) of
the density matrix psyp(t) we get

(1 =P)ps+5(t) = exp[—i(1 = P)L - (t —to)|(1 — P)ps+n(to)

t
i / expl—i(1— P)L - (t — V(1 — P)LPpgsn(r) dr. (3.5)
to
Here and everywhere below, exp[A] = eA is as usually understood as e =
+oo 1 n
n=0 F(A) *

Now, we can proceed in two ways. The first consists in the direct introduction of
(3.5) into the first equation of (3.4). The result is the so-called Nakajima-Zwanzig
identity [3, 4, 5]:

d .
EPPSJrB(t) = —iPLPps+p(t)

— | PLexp|—i(1—P)L-(t—7)](1 —P)LPpsyp(T)dr

to
—iPLexp[—i(1 = P)L - (t — to)|(1 = P)ps+5(to)- (3.6)
The second way is to rewrite ...pgsyp(7) at the end of (3.5) as ... [exp[il - (t —

(1 — P)ps+p(t) +explil - (t — 7)]Pps+p(t) * and solve the resulting equation
for the ‘interesting’ part of the density matrix Ppsyp(t). The results reads

—1

t—to _ '
(1= Pps+p(t) = {1 +i / e TP (1 — P LPeET dT}
0

t_t() . . .
: [—z/ e MU=PILT (1 _ PYLPET dr 4 71 I-PIE(E—to) (] P)psﬂg(to)} .
0
(3.7)

3Here we use a formal solution of (3.1) in the form of pgsyp(7) = exp(iL(t — 7))ps+ 5 (t)
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Introducing (3.7) into the first equation of (3.4) yields the Shibata-Hashitsume-
Takahashi-Shingu (SHTS) identity* [6, 7]
—1

t—to 4
%Ppsw(t) = —iPL [1 + z/ e~ 1=PILT (| _ P)LPeil dT}
0

[Posin®) + e ITPIECT0 (1 = P)pg p(te)] . (3.8)

With this, we now formally perform the thermodynamic limit of the bath. On
the level of (3.6) or (3.8), it still cannot be performed in general. However, with
projectors of the type of (3.3), the task is solvable. Introduce first (3.3) into (3.6)
and perform the trace over the bath, i.e., Trg. For the density matrix of the
systems pg(t) = Trpps+p(t), we obtain

%ps(t) = —iTrp[L(pPps(t))] + / o M(T)ps(t —71)dr + I(t —to), (3.9)
0

where the memory superoperator
M(7) ... = —Trp[Le " O"PIET(1 P L{p? .. }] (3.10)

is now a superoperator in the Liouville space of operators in the Hilbert space of
the system only, and the initial condition term (operator)

I(t —tg) = —iTrg[Le ' A=PIEE=t) (1 — P)ps. p(to)] (3.11)

depends, for fixed psip5(to), only on the time difference ¢ — ¢y and expresses influ-
ence on time development of pg(t) of the ‘uninteresting’ part (1 — P)psyp(to) of
the initial condition psyp(t).?> It is worth noting that all the terms on the right
hand side of (3.9) depend on the detailed choice of pZ. Solution pg(t) is, however,
pP-independent. One could give all these formulae a standard matrix form. For
that, one must introduce matrix elements of linear superoperators.® Let A be a
linear superoperator. Then its matrix elements (with four indices) are determined
as

Aapea = [Alle){d])]ap- (3.12)
Thus,
(AB)ap =Y AapcaBed: (3.13)
c,d

4A time-local identity for just the ‘interesting’ part of the density matrix Ppgy g(t) was first
derived by Fulinski and Kramarczyk (8, 9]. Full equivalence of their equation to (3.8) was proved
by Gzyl [10].

5The ‘interesting’ part of the initial condition Ppgsi g (to) = pPps(to) must be added to the
integro-differential operator equation (3.9) as the standard initial condition.

6 All the superoperators here are linear; i.e., they fulfill the condition A(aA + bB) = a AA +
bAB, where a, b are general c-numbers and A, B are arbitrary operators.
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Hence, defining matrix elements of the density matrix of the system as
Pmn(t) = (ps(t))m.n, (3.9) may be rewritten as

d ] t—to
%pm,n(t) = _@Zﬁfrffl,p,qpp,q )+Z/ Winn,p,g(T)Pp.g (t=T) AT+ I (t—10),

(3.14)
where £¢ff = Zu(ﬁ(pB ® [P)(q])mp,ny, and memory functions wy, n p.q(7) are

mn,p,q
defined as matrix elements of the above memory superoperator

Win,n,p,q(T) = Minppq(T) = — Z [PLQ_i(l_P)ET(l - P)Ep]mu,nmpmqﬁpf,n

TR
== > [Le O~ P) Ll npsipman P (3.15)
TR
and
Iy (t = to) = —i Y _[Le =PI (1 — P g p(to)|mpunp- (3.16)
I

One often speaks of (3.9) as (one particular” form of) the Time-Convolution Gen-
eralized Master Equation (TC-GME). In a completely analogous way, with the
Argyres and Kelley projector (3.3), one can rewrite (3.8) as a set of differential
equations with time-dependent coefficients

Pm n( Z Wi m;mq )pp,q(t) + Jm,n(t —tp), (3.17)

with transfer quasi-rates
I/I/vm,n,p,q(tL - tO) =

t—to . . -1
—i Z L [1 —i—i/ e IR (1 _ P LPetET dT] ] pf’,{

1T b 0 MAL LT g

(3.18)
and the initial condition term
t—to . . -1
Jmn(t —to) = —zz {1 +¢/ eTI=PILT (] _ Py LPetlT dT]
0

T A=PIL(=to) (1 — P pg. p(to) . (3.19)

MM

This (matrix) equation is a prototype of a Time-Convolutionless Generalized Mas-
ter Equation (TCL-GME). Everywhere here, the Greek indices pu, ,, etc. corre-
spond to an arbitrary basis in the Hilbert space of the bath, Latin indices m, n
etc. correspond to a general basis in the Hilbert space of the system, and the

"We have used a very specific choice of P here.
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double-indices mpu, pm gk etc. correspond to a basis in the Hilbert space of the
(system + bath) complex |mu) = |m)|u).

Now we come to one of the central problems of this section, namely that of
taking the thermodynamic limit of the bath. One could take, as a general repre-
sentative example, the case of a (quantum or classical) gas of molecules interacting
with and thermalizing with the walls of the gas container. It is tempting to pre-
maturely identify terms, e.g., the memory (second) term on the right hand side of
(3.9) with thermalization terms in the corresponding kinetic equation for the gas
(system) in the container (bath). In principle, this is possible, but only after the
thermodynamic limit of the bath is taken. The point is that thermalization is an
irreversible process while our equations (3.9) and (3.17) are so far still reversible.
Thus, the thermodynamic limit of the bath is necessary. In order to identify what
is the qualitative change expected in (3.9) and (3.17) that cause such a large change
of the behavior of the solution pg(t), one should first notice that, because of keep-
ing the system fixed, in the thermodynamic limit of the bath, the only quantities
changing during this limit are the memories wy, n pq(7), the transfer quasi-rates
Winn,p.q, and the initial condition terms I, (t —to) and Jy, ., (t — to). Before the
thermodynamic limit, the reversible behavior of the solution (reflected in the ex-
istence of Poincaré recurrences) is reflected in similar recurrencies in W, 5 p,q(7),
Winnp.qs Lmn(t — to) and Jp, ,(t — to). Formally, it comes from the fact that all
these quantities contain in their definitions summations over states of the bath
(summations over Greek indices), and the latter summations are discrete, on ac-
count of the finite size of the bath before the thermodynamic limit of the bath is
taken. That is why, for instance, memories decay with increasing time, but not
directly to zero. Small fluctuations around zero are expected to return again to
finite amplitudes of w’s with the appearance of the above recurrences. In the ther-
modynamic limit of the bath, however, the recurrence time becomes infinite and
correspondingly the summations become integrals. Then, as a consequence of the
Riemann-Lebesgue theorem of the theory of the Lebesgue integral®, the memories
Wi, n,p,q(T) are expected to decay to zero when 7 — +o00. One then speaks about
a finite memory of systems interacting with the bath. In finite-order perturbation
theories for the memory functions, such a behavior is actually observed. As for the
transfer quasi-rates Wy,  p.q(7), one expects that they should turn to constants (as
is observed in finite orders of perturbation theories) when 7 — 4o00. On physical
grounds, it is tempting to believe that this remains true even in the infinite orders
in perturbations but counter-arguments also exist [11]. As for the initial condition
terms I, ,,(7) and Jp, »(7), they are usually believed to decay sufficiently fast to
zero with increasing time argument. Physical arguments exist, however, that this
cannot be generally true except for very specific — though physically the most
important — choices of p? fitted to, e.g., the initial density matrices of the bath
[12]. If these ideas supported by the lowest-order perturbational studies are really
universally valid, then, for example, it is the finite extent of the memory functions
that distinguishes the irreversible behavior of the infinite bath (thermodynamic
limit) from the reversible behavior of the finite bath.

8 Assume that f f(x) dx converges. Then f f(x) cos(zt) dz and f f(z) sin(xt) dz also converge
and go to zero when t — +oo.



62 Challenges to the Second Law

Now, finally, we are able to specify the weak-coupling regime. For the sake of
simplicity, we will work with just TC-GME (3.14) and will assume for now that
the initial condition term I, ,(t — to) in (3.16) is exactly zero. This means to
assume the initial condition that: (i) the bath is initially statistically independent
of the bath, i.e.,

ps+8(to) = pB(to) ® ps(to), (3.20)

where pp(t) = Trsps.p(t) is the density matrix of the bath; and (ii) that p?
in (3.3) is the initial density matrix of the bath (and, thus, in all the formulae
containing P), i.e.,

pP = pp(to). (3.21)
It is easy to verify that if both these conditions are satisfied, then both I, ,,(t —to)
and Jp, o (t — to) are identically zero. We will also henceforth implicitly assume
that the thermodynamic limit of the bath is already performed so that the mem-
ories W, n,p.q(7) decay sufficiently fast to zero, becoming thus integrable.

The idea of the weak-coupling regime goes back to van Hove [13] and consists
of several steps:

e The Hamiltonian of the (system + bath) complex is written as a sum of those
of the system only Hg, the bath only Hpg, and the system-bath coupling
HS—B 5 i. €.,

H=Hgs+ Hp+ Hs_p. (322)

e It is assumed that the system-bath coupling is proportional to A, where A is
a formal coupling parameter, i.e.,

Hs p=\-Hgs_p, (3.23)
where Hg_p is A-independent.

e A new time unit 7 oc A=2 is introduced, leading to a new (dimensionless)
time t' = (¢t — to)/70.

e The formal limit A — 0 in (3.14) is taken utilizing the fact that then
)1\in% N1 = const # 0. (3.24)
The idea is that in this limit, all but the lowest (second) order in expansion (in
powers of A of the memory functions wp, np q(7)) disappears. In order to verify

this, let us first prove that expansion of the memory functions really starts from the
second order term o A2. In order to see that, let us first introduce superoperators

1 1 1
£S...:£[H5,...], EB-":ﬁ[HB7'-']7 ES,B:E[HS,B,...]O()\. (325)
With that, one can easily verify that?
TI'B(,CB .. ) = 0, Pﬁs = CSP, CBP =0. (326)

9This is still the Argyres-Kelley projector P in (3.3)
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In the last equality we have used that

B _ exp(—(Hp)
Trp(exp(~fHp))’

[Hp,pP] = 0. The form of (3.27) will be used henceforth since it allows us to
introduce, in connection with the above initial condition (3.20-3.21), the initial
temperature of the bath T'=1/(kp3) (kg being the Boltzmann constant). Thus,
using the idempotency property of P and from (3.26) and (3.15), we obtain

(3.27)

Wi n,p,g(T) = — Z [LS—Beﬂ.(liP)ET(l - P)'CS—B]m;unu,pmqnpf,n- (3.28)

T

This is proportional to A?2. Of course, because of the presence of Lg_p in the
exponential in (3.28), higher orders in A are present in wy, n p.q(7), too. We wish
to show that in the weak-coupling limit, they simply disappear. Let us introduce
the density matrix of the system in the Dirac representations as

~ aLelft—t
ps(t) = e £ (t=to) po(4), (3.29)

Then, with the initial condition (3.20) and identity (3.21), (3.9) may be rewritten

as

d t=to . ., e
s (t) :‘/‘ e £t M(7)em T 0 g (1 — 1) dir (3.30)
0

Introduce now the same density matrix of the system in the Dirac picture, but
with time dependence expressed in terms of the new (rescaled) time t' as

os(t") = ps(t). (3.31)

Then (3.30) reads

d . pelty #'o peffo _ipeffy o T
@gg(t’) = et tTO/O ToM(1)eE Te T tT“gS(t'fT—o)dT. (3.32)

Now, let us take the limit of A — 0 as assumed in the van Hove limit of the
weak system-bath coupling. The presumably slowly varying gg(t' — TLU) may be
then well replaced by gs(t') — and notice that 75 oc A™2. For the same reason,

Ot oo f0+°° and also limy_o oM (7)e* '™ = limy g oM@ (7)eifs7. Here
the superscript ...(%) means the second order contribution only. Returning then

back to variable pg(t), we thus obtain

d
Sps(t) ~ LT ps(t) + Rps(t),

+oo
R...= / M (r)etbom dr .. (3.33)
0

Here R is so-called Redfield relaxation superoperator (its matrix elements being
sometimes called the Redfield relaxation tensor). Thus, we find not only that just
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the second-order term in the expansion of the memory superoperator contributes,'°
but we also find that the convolution GME goes to a convolutionless (time-local)
form, with the variable pg(t) brought out from below the integral bearing the same
time as that one on the left hand side. (This is so-called Markov approximation.)
Significantly, both approximations simplify the problem considerably; (3.33) in the
matrix form is then nothing but the set of so-called Redfield equations (without
Redfield secular approximation) [14, 15, 16].

One should understand the physical meaning of the combined weak-coupling
van Hove limit. In fact, one can easily understand why, for weak couplings, higher
(than second) order effects described by the memory superoperator M become
negligible as compared with the lowest (second) order ones. However, the latter
lowest order terms also become slower and slower. The reason why they do not
finally disappear is that we simultaneously increase the time scale (keeping the
relative time ¢’ constant). Hence, we provide these lowest order processes (o< A\?)
with longer and longer time to happen, unlike the higher order processes. The rate
of increasing the time scale (79 oc A=2) is simply insufficient to preserve the latter
processes o< A*. The question arises as to whether it is formally justified to keep
the second order processes (in the second term on the right hand side of (3.33))
simultaneously with the zeroth order ones (in the first term on the right hand side
of (3.33)). The answer is yes and the arguments are as above or can be found, in
a more precise mathematical form, in a series of papers by Davies [17, 18, 19].

Equations (3.33) have been applied to a number of physical phenomena, includ-
ing nuclear magnetic resonance and excitation transfer in solids. These equations
have been very successful from many points of view, however, several deficien-
cies have been recognized that are of critical importance to our purposes. Let us
consider them.

e The Redfield equations, irrespective of their rigorous derivation, do not in
general preserve positive semidefiniteness of the resulting density matrix of
the system pg(t). The reason consists in the mathematical limit A — 0 in-
volved in the derivation, but necessary application for finite (though perhaps
small) values of ), i.e., the system-bath coupling as it is expected in Nature.
The situation was, from the point of view of the positive semidefiniteness of
ps(t), analyzed in detail by Diimcke and Spohn [20]; it was found that an-
other (related) form of the kernel in (3.33) is necessary. According to Davies
[18], there are more (in fact, infinitely many) such forms that are all equally
justified in the limit of A — 0. For finite system-bath couplings (as required
in physical reality), however, they differ appreciably and the form proposed
by Spohn and Diimcke does not seem to be physically the best one [21].

‘

e Above, we write ‘... The presumably slowly varying gg(...)...’. By that,
we mean that the density matrix of the system is a much smoother func-
tion of time in the Dirac representation than in the Schrodinger one. This
assumption underlies the reason why the above derivation of the correspond-
ing master equation for pg has been made, as usual, in the interaction pic-

10This second-order approximation is usually called the Born approximation
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ture. Only after performing the A — 0 limit, have we returned to the stan-
dard Schrodinger picture. Unfortunately, the assumption about appreciably
smoother time dependence of the system density matrix in the Dirac picture
(as compared with the Schrodinger one) is not true in general, in partic-
ular, once we approach a stationary state. Actually, from the definition
of the stationary state, mean values of all physical operators (that are in
the Schrodinger picture independent of time) should be time-independent.
Hence, the density matrix pg(t) should also becomes time-independent, in
contrast to that in the Dirac picture p(t). Consequently, a much better ap-
proximation to (3.9) in nearly stationary states than (3.33) should be, for
low \’s,

ips(t) ~ LY ps(t) + /+°° MO (1) drps(t). (3.34)
dt ;

In the initial stage of the relaxation, on the other hand, the opposite may
be true. In any case, this type of uncertainty shows physical problems hid-
den behind the otherwise perfect mathematical form of the van Hove weak-
coupling limit, as applied to the time-convolution formalism [17, 18].

Problems connected with transition, upon increasing time, between (3.33) and
(3.34) seem to be perhaps only artificial and connected with the Born approxima-
tion within the time-convolution formalism. In order to support this, we mention
that TC-GME formalism based on (3.6) and the so-called Mori formalism (§3.8.1)
are fully equivalent [1]. So, one can directly use results known for the Mori theory
leading to the same time-convolution form of equations for pg(t), (3.9) or (3.14).
In [22], it is shown that: (i) the Born (second order) approximation of the kernel
in (3.9) alone (i.e., without performing the Markov approximation) does not yield
relaxation to any stationary situation, though the standard Born-Markov approxi-
mation in the interaction picture (leading to (3.33)) indicates the opposite; and (ii)
the solution then shows an infinitely long memory of details of initial conditions.

These features are clearly unacceptable; the problems thus arising also have
unpleasant implications in other areas'!. Completely different is the situation
in time convolutionless theories of the type of (3.8) and (3.17). First, a proof
exists that the set (3.17) as provided by identity (3.8) is exactly the same as
provided by the Tokuyama-Mori theory (§3.8.2) [24]. That is why we can directly
use results obtained in this approach. In [25, 26], it was shown that in such
time-convolutionless formalisms, the Born approximation yields full relaxation to
a stationary state, and it properly describes forgetting details of initial conditions
during the course of the relaxation.

The question of a proper type of the Markov approximation does not even ap-
pear, implying that a preference should be given to such time-convolutionless for-
malisms. Thus, we shall briefly mention the above weak-coupling time-convolution
counterpart for (3.33).

In the same way as above, we will work with the initial condition (3.20-3.21),
with the Argyres-Kelley projector (3.3), and with the identity (3.27). Applying the

11See, for example, the asymptotic time symmetry breaking problem in connection with results
discussed in [23].



66 Challenges to the Second Law

the usual van Hove weak-coupling procedure to (3.17), we fully reproduce (3.33)
as a legitimate equation for the short- and intermediate-time regime (as measured
by the bath-assisted relaxation times). In order to obtain a counterpart of (3.34)
as a master equation for long times, we first perform the infinite time limit in the
coefficients in (3.17) and only then expand as usual to the second order in Hg_p.
We do not obtain (3.34) but, instead, again (3.33). Finally, keeping constant time
t in the upper limit of the integrals in coefficients in (3.17), and formally expanding
the coefficients to the second order in Hg_ g, we obtain'?

%ps(t) ~ =L pg(t) + R(t)ps(t),

R(t)...= /0 t MO (r)etbom dr .. (3.35)

Here R(t) is a time-dependent generalization of the Redfield superoperator R
defined in (3.33) that turns, with increasing time, again to R. The following
facts imply that the time-convolutionless form of the Generalized Master Equa-
tions (as resulting from the SHTS identity (3.8)) should be preferred to the time-
convolution form of the Generalized Master Equations resulting from the Nakajima
and Zwanzig identity (3.6):

e R(t) goes to zero when t — 0; i.e., (3.35) properly describes so called slippage
(initial delay of the relaxation);

e (3.35) continuously goes to (3.33) with increasing time;

e there is no necessity to perform (together with the Born approximation) the
Markov approximation as above; and

e the Born (second order) approximation in Hg_ g creates no formal problems.

The fully rigorous mathematical foundation of the van Hove limit, as given
by Davies [19] and which can be implemented in both the time-convolution and
the time-convolutionless form of the Generalized Master Equations, had an unin-
tented, undesired effect: Many began to believe that certain features, for instance,
the relaxation or stationary state as described by the weak coupling theory, are
valid in general, in all possible relaxation regimes. One such belief is that the
relaxation of open systems in stationary conditions must inevitably go to a canon-
ical Gibbs state. This is not generally true and such a postulate would distort the
physics of the systems investigated here. What is the justification for such a strong
statement? One should realize that assumption of the weak system-bath coupling
means assuming that all bath induced processes in the system are (appreciably)
slower than competing processes in the system itself. As an illustration, take for
our system the gas particles in the Maxwell double compartment, divided by the
wall equipped with a gate (Figure 1.1), and let the walls, connected with the rest
of the universe, be the bath. Formally, the gate also belongs to the system. At

12without assuming whether pg(t) has already relaxed to stationary values or not.
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this stage, let us not decide who (or what) operates the gate. The act of closing
(opening) the gate should be done on grounds of the interaction with the bath as
far as the process is a spontaneous process, going downhill (in energy); otherwise,
the act of closing and opening the gate would not be spontaneous. If such a bath-
assisted process were slower (or even infinitely slower, as assumed in the van Hove
weak-coupling regime) than the dynamics of the gas molecules, the separation of
the molecules to slower and faster ones (as in the Maxwell demon system) would
not be possible. The gate could not open and close in time to accommodate the
instantaneous situation of the gas. So, in order to be able to model such ‘demonic’
systems, we must inevitably go beyond limitations imposed by weak-coupling ap-
proaches. This is what we now pursue.

3.3 Beyond Weak Coupling: Quantum Correlations

Going beyond the weak-coupling regime appears advantageous for second law
challenges. Two questions immediately arise.

e What specific regimes could potentially allow second law violation?

e Are there mathematical justifications for going beyond the limitations of
weak coupling?

The answer to the first question is not as simple as it might seem. It is perhaps
physically meaningless to consider regimes other than weak coupling in the literal
sense. The strong coupling limit in the sense of our coupling parameter A going
to infinity would be oversimplified for our purposes, owing to lack of competition
between different processes forming the foundation of our approach. Moreover,
from the technical point of view, any expansion would have to be in powers of,
for example, a small parameter A~ around a A — +oo solution. That would
be complicated both technically and physically. Instead, we need competition
between parallel physical processes. Hence, we require, for instance, that the
rates of the bath-assisted processes be comparable (in the intermediate regime) or
stronger (in the strong coupling case) than those of internal processes (inside) the
system. However, the ratios among the processes should stay finite for physical
reasonableness. Taking this as a definition of the regimes of commensurable or
strong coupling, we can then proceed to the second question.

What is important is the relative strength of at least two competing processes,
one of them being associated with the coupling to the bath. This, however, says
nothing concerning the value of, for instance, a joint small parameter of such
competing couplings. Hence, it appears reasonable to use the formalism of the
weak-coupling limit, i.e., corresponding to the regime of weak coupling for both/all
the competing mechanisms causing the relaxation (kinetic, transfer) processes.'3

13This does not exclude the possibility, e.g., that the coupling to the bath causes bath-assisted
relaxation processes to be, perhaps, several orders of magnitude faster than rates of internal
processes in the system. The relative ratios of such rates must, however, always remain finite.
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If we speak of the formalism of weak coupling in this sense, keep in mind that
the word ‘weak’ always means in this connection commensurable with & /7y where
To o< A~ 2 is the time unit going to infinity, in the A — 0 limit.

With this hint for proper formal description for an intermediate/strong regime
kinetics by means of the weak-coupling formalism, we can now speculate as to
what might be the most important features distingushing this regime from the
usual weak-coupling one. There should be consequences, but we have particularly
those in mind that influence the particle (quasiparticle, excitation, etc.) transfer.
Refraining from a full list, we distinguish several cases:

e The role of the ‘Maxwell gate’ could be played, for instance, by topological
changes in the molecular systems on which the transfer takes place. Such
changes would appear at the moment the particle (or molecular group) ar-
rives at and is detected at a specified place — known in molecular biology as
a receptor. This is in analogy to what is presently known about mechanisms
of activity of molecular systems at the entrance to membrane pumps. In
such situations, the desired activity requires:

— a specific type of correlation between the particle position and the topo-
logical form of the molecular system: that the ‘entrance bridge’ opens
whenever the particle arrives at the entrance, but closes once the par-
ticle crosses it; and

— that the dynamics of opening and closing of the bridge is comparable
in speed to that of the particle processed.

For reasons explained above, such correlations seem possible. Detailed theory
will be developed below.

e The gate system can be formally developed via standard phonons from molec-
ular or solid state lattice dynamics. Imagine, for example, that the processed
particle arrives at a receptor that responds to its presence via a molecular
bridge which was triggered by the particle far away. Such molecular processes
are standard in molecular biology, explaining activities of many biomolecules
[27]. Such static shifts can be expressed as a superposition of phonons with
perfectly matching mutual phases. Such phonons, on the other hand, also
form the usual polaron clouds around particles. Hence, polaron formation
may be the mechanism interrupting the return paths for quantum particles,
forcing them to go one direction only, even uphill in energy. Energy con-
servation is preserved, owing to a continuous virtual phonon absorption and
emission due to the coupling. Hence, we do not require an external demon to
decide whether the ‘gate’ will be closed or open. The system (the particle)
makes the decision spontaneously, on grounds of a spontaneous fall into a
polaron well produced by the particle itself. In order to properly describe the
polaron states, sufficiently high orders in the particle-phonon coupling are
required. Moreover, for the polaron effects to be sufficiently pronounced, one
must go beyond weak coupling theory, in which case the correlations that
appear and are decisive for the gate effect are: (i) between the particle and
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position of the polaron deformation cloud; and (ii) among phonons forming
the polaron cloud.

In principle, one needs the Maxwell gate simply to induce particles to move
preferentially in one direction. This one-directional motion may also be due
to other mechanisms with uni-directional properties. We have in mind, for
instance, spontaneous processes or on-energy-shell diffusion between tails of
two different exciton levels broadened by the exciton-bath coupling. In the
former case, we must go beyond the limitations of weak coupling theory
since in the lowest (zeroth) order in the system-bath coupling, one obtains
the canonical distribution for the particle (system), which leads to zero cur-
rent or heat flow. For the latter case, the coupling must be sufficiently strong
to obtain a pronounced level broadening. The exciton (and energy) flow are
then the result of different exciton site populations arising from different site
energies. In such situations, there are no pronounced correlations needed for
the unidirectional-transfer effect. These cases also go beyond the weak cou-
pling theory. Other situations abetting the inclusion of higher-order effects
in the system-bath coupling will be discussed below.

3.4 Allahverdyan-Nieuwenhuizen Theorem

The approach by Allahverdyan and Nieuwenhuizen (A-N) is somewhat dif-
ferent in philosophy. From a general point of view, it provides one of the most
decisive treatments because it allows precise and detailed consideration of all basic
quantities from phenomenological thermodynamics. On the other had, it is quite
special and idealized such that it might not correspond to realistic thermodynamic
systems [28, 29].

The authors consider the case of a Brownian particle in a harmonic confining
potential, coupled to a thermal bath consisting of harmonic oscillators. The excep-
tional value of the A-N model is that it is exactly solvable so that it may serve also
as a pedagogical example on which basic postulates and statements of thermody-
namics can be discussed and scrutinized. Their theoretical quantum mechanical
treatment is not limited to the case of the weak system-bath coupling (Brownian
particle-harmonic oscillators) for which standard arguments are well supported by
statistical physics. Rather, A-N’s methods are able to address strong coupling
correlation effects (system-bath entanglements) and lower temperature regimes in
which deeply quantum effects are pronounced. Note that decreasing temperature
to zero does not bring the particle (system) to a pure state because it is coupled
to the bath (e.g., strongly, weakly).

In this model, only equidistant bath harmonic oscillators and the Drude-
Ullersma of the coupling constants are involved!4. These specifications allow ana-
lytic treatment, including the thermodynamic bath limit. Standard formulae are
used for connecting the partition function with the Gibbs free energy of the sta-

14 Questions have been raised about the thermodynamic legitimacy of the Ullersma model [30].
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tionary (equilibrium) state of the (particle + bath) complex. The statistical (von
Neumann) entropy is appropriate.

The analysis of the stationary state finds that effective coordinate and mo-
mentum temperatures (in energy units)'® become different, both of them differing
from the bath temperature. Moreover, these differences survive even in the high
temperature limit of the bath. This indicates deviation from the usual equiparti-
tion theorem. The difference between the total entropy of the (particle + bath)
complex and that of the bath without the particle scales as S, o< vI' (where 7 is
a dimensionless system-bath coupling constant, and 7" is the bath temperature).
Since the statistical entropy remains finite at 7" — 0 owing the the system-bath
entanglement, the entropy of the (system + bath) complex does not additively
consist of the bath and particle entropies separately. Entanglement adds a fun-
damentally new dimension to the thermodynamics. This has been explored by
others as a possible energy source [31, 32, 33].

Next, adiabatic changes of parameters is carried out, in particular, adiabatic
changes in the spring constant a and the (effective) mass m. For the situation
investigated, with two different temperatures 7}, and T}, the Clausius inequality
should read:

5Q < T, dS, + T, dS., (3.36)

where S, and S, are the corresponding 'momentum’ and ’coordinate’ entropies
summing up to the Boltzmann entropy Sp = S, + S;. For the adiabatic (i.e.,
reversible) changes of a and m, (3.36) should become an equality, however, it does
not. The Clausius inequality (3.36) is violated. This fact survives for even high
temperatures (v # 0). It is also remarkable that, even with proper definitions of all
the quantities involved, upon comparing two equilibrium systems at two slightly
different temperatures 7" and T" + dT,
232

5@ - TdSstat = %dT (337)
Sstat 18 the von Neumann entropy, 3 is the reciprocal temperature of the bath in
energy units, and I' is a parameter related to the above assumed Drude-Ullersma
spectrum of the harmonic oscillator coupling of the particle to the bath. The right
hand side of (3.37) should disappear provided the identification of the statistical
(von Neumann) entropy with the thermodynamic entropy is justified. The right
hand side of (3.37) disappears, however, only in the weak-coupling limit v — 0, in
the classical limit (% — 0, Planck correspondence principle) or in the high temper-
ature limit (7" — 4o00). (This supports our previous concerns about identification
of the statistical entropy with the thermodynamic one.)

The A-N model is also interesting that it allows full analytical treatment of
dynamic properties. Among several conclusions obtained, the most salient is that
positive entropy production rate is not guaranteed; rather, below a specific tem-
perature determined by parameters of the model, the entropy production rate can

2
BT, = (ax?) and T, = <%> Here V(z) = %a:r:2 is the particle potential energy in the

confining potential.
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be negative. The authors also analyse possible cycles of changes of external pa-
rameters of the system. Leaving aside many other results, we conclude by citing
from [28]. For at least the model investigated,

...there are principle problems to define thermodynamics at not very
large temperatures and, in particular, in the regime of quantum entan-
glement. There is no resolution to this, and thermodynamically unex-
pected energy flows appear to be possible. .. Out of equilibrium cycles
have been designed where a constant amount of heat . .. extracted from
the bath is fully converted into work, while the energy of the subsys-
tem is at the end of each cycle back at the value of the beginning. In
this sense, systems described by our models, with parameters in the
appropriate regime, present at low temperatures true realizations of
perpetuum mobile of the second kind. .. Our results can be phrased in
the statement that Maxwell’s demon exists.

In conclusion, Allahverdyan and Nieuwenhuizen have provided a strong case
that quantum entanglement can lead to violations of certain formulations of the
second law. Their system is microscopic, but there seems to be no obvious imped-
iment to scaling it the macroscopic regime. Their conclusions support previous
results from other groups. It remains to be seen whether experiments can be de-
vised to test the salient features of this idealized model.

3.5 Scaling and Beyond

Most quantum mechanical second law challenges preceded the harmonic os-
cillator model by Allahverdyan and Nieuwenhuizen [28, 29], however, they were
more complicated, making exact or rigorous solutions impossible. Because of the
inherent kinetic character of the theories, it was necessary to go beyond the weak-
coupling regime. The proper kinetic theory developed gradually; its final form
can be found in, e.g., [34]. If we wish to translate quantum entanglement into
challenges, we should first identify candidate effects. In most models considered,
the key is a mutual competition between different — possibly interfering — quan-
tum reaction channels. One type relies on bath-induced processes (relaxation)
within the system; thus, competing processes might be provided, perhaps, by ki-
netic processes in the system itself. (This possibility does not exist in the system
investigated by Allahverdyan and Nieuwenhuizen [28, 29] since the internal sys-
tem consists of just a single particle having no internal degrees of freedom.) To
describe such a competition properly, one must identify the proper terms in the
total Hamiltonian H and treat all such ’kinetic’ contributions to H simultaneously
and, as far as possible, on the same footing. Internal kinetics in the system has,
however, nothing to do with the system’s coupling to the bath. Consequently,
such ’kinetic’ terms must inevitably include not only the system-bath coupling,
but also some parts from the Hamiltonian Hg of the system itself.
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Second, in order to preserve the entanglement (competition), one is not neces-
sarily forced to treat such competing 'kinetic’ terms (perturbations) exactly. To
the contrary, technical problems force us to use approximations of the type of the
lowest-order (Born-type). Of course, we must be careful not to lose the effects be-
cause of these approximations. One rigorous approach is connected with the above
scaling, but this time the scaling cannot be that of the van Hove weak coupling
type. Fortunately, almost all formulae and general theorems provided by Davies
remain valid [17, 18, 19], so this is the form the theory will take.

As usual, first we write the total Hamiltonian of the open system of interest as
H = Hgs+ Hp + Hg_p and rewrite it as

H = Hy+ \Hq, (338)

where now the perturbation AH; includes, in addition to (the decisive part) Hs_ g,
also the internal kinetic terms from Hg describing the internal processes in the
system competing with those caused by Hg_p. These terms, however, may be
formally of even higher order in A. This helps to compare, for instance, coherent
transfer rates proportional to J/h (J being resonance transfer, or so-called hop-
ping integral) with bath assisted transfer rates o Hg_ p x A% as dictated by, for
instance, the Golden Rule of quantum mechanics. Thus, (3.38) allows H; to be
A-dependent. Designating the Liouvillians as

1
Lo...= 5 [Ho,. ] My = (A, ), (3.39)

>

one can verify the identity!6

e—i(ﬁo-‘r}\ﬁl)t — e—l(£0+A7)£1'P+)\(l—p)£1(1—7)))t
t

+)\/ dse—i(LoFAPLIPAAI=P) L1 (1-P)) (t—s)
0

P(=iL1)(1 = P) 4 (1 — P)(—iLy)PleLotALr)s, (3.40)

Here P = P? is an arbitrary projection superoperator which we shall later under-
stand to be that of Argyres and Kelley [2]. This identity is significant. It derives
from the fact that the exponential on the left hand side generates time-development
of the density matrix of the (system-+bath) complex, as described by the Liou-
ville equation. By iterating this identity, changing the order of integrations, and
multiplying it from both the left and the right by P, we obtain

Pefi(l:OJr)\[:l)tfP — Pef’i(ﬂoJr/\'PL‘,l,P)t

t t—u
a2 / du / dPeiEoNPLP)t—u=s)p(_ir ) (1 — P)
0 0

.efi(l:0+/\73£,173+)\(1773)£1(1773))w(1 _ 7)) (7i£1)P€7i(£0+/\£1)uP. (341)

16Notice that AL1 may also contain higher powers of .
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Here, we have assumed that

PLy = LoP. (3.42)
Now we rescale the time arguments by setting, 4 la van Hove,
t=1/) u=0c/\. (3.43)

In physical terms, 1/A? can be understood as a new time unit that renders 7
dimensionless. This yields

pe—i(ﬁo+/\£1)x2fp _ Pe—i(L‘o+>\PL177)A’27—

A"2r
+/ do e—i(£0+,\7>£17>)(,\*27—,\*20)H()\7T _ U)Pe—i(LoJr,\cl)x%P (3.44)
0
Here

227
HO\7) = / da Pl ErXPEPIE(_ir y(1 — )
0

_e—i(ﬁo-i-kpf,lp"r)\(l—P)ﬁl(1—7>))CC(1 _ P)(_Zﬁl)P (345)

Now, we specify P as the Argyres-Kelley projector (3.3), cancel the initial
density matrix of the bath p? on both sides of (3.44), and take the thermodynamic
limit of the bath. Following Davies [18], it is permissible that the (super)operator
H(A, 7) may, in the limit of small A, be replaced in (3.44) by its formal limit when
A— 0, i.e.,

+oo
H = pP / dx Trp (0% (—iLy)e™ 0% (1 — P)(—ily)P). (3.46)
0

By the word ‘formal’, we mean that before the integration, the integrand must
be already written in the infinite bath (thermodynamic) limit. This makes the
integral convergent. With this replacement, (3.44) then reads

Pe—i(ﬁo+/\£1)x2r7; _ rPe—i(L'o+>\73£1’P)A’2~r

A2r
+ / do e~ (Lot APLIP)A T2 1= A"20) Do =i Lo+AL1A o (3.47)
0

Its formal solution is

pefi(LOJr,\cl),\—%P _ Pefi(£0+)\73£173+i)\27-{))\_27—’ (3.48)

This means that for initially separable density matrices psy g (t) of the system and
the bath:

ps+8(0) = ps(0) ® p”, (3.49)
we have the rigorous statement!”

li t) — —i(Lo+(L1)+iNZK)t —
Ali’%ogsii?gzz”p:;() e ps(0)|[ =0,

17Here the finite constant a is arbitrary.
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+o0
K...= lim dx Trp (0% (—iLy)e™ 0% (1 — P)(—il1)(... ® pB),

(L1)... =Trp(Ly...® pP). (3.50)

Specifically, we may write, as already indicated above,
Hy= Hg|x—0 + Hg, MH, = Hg_p+ Hgs|xz0 — Hs|x=0, (3.51)

with Hg_p o< A and Hg|x20 — Hs|x—o representing the above inherent ‘kinetic’!®
terms in Hg that describes bath-nonassisted processes in the system competing
with the bath-induced processes, conditioned by the system-bath coupling Hg_p.
The term Lo + (£1) in the exponential in the first line of (3.50) give basically the
same result as the standard van Hove weak-coupling, with

Hy=Hs+ Hp, MH;=Hg_p. (352)

Thus, for example, Trg Hs_pp? = 0 (when the effect of Hs_p in Lo disappears),
Lo+ (L1) describes a free (non-relaxational) time-development of pg(t) in extended
eigenstates of Hg. On the other hand, in contrast to the weak-coupling theory
with identity (3.52), the superoperator K in (3.50) does not reduce to the Redfield
superoperator R in (3.33), as it does when (3.52) is accepted. Thus, it no longer
describes the bath-assisted relaxation among the extended eigenstates of Hg. To
the contrary, in view of the fact that the effect of Hg|xzo — Hglx=0 in K in
(3.50) disappears whenever P[Hg|x-0 — Hs|rx=0,-..] = [Hs|xz0 — Hs|rx=0,P .. ]
and also because of the fact that £y then describes free relaxation in terms of only
localized eigenstates of Hg|x—o, K describes the bath-assisted relaxation among
localized eigenstates of Hg|x=o only. This remarkable difference has far-reaching
consequences that could be ascribed to the above competition between the bath-
assisted relaxation processes and inherent kinetic processes in the system.

From (3.50), we conclude that the true dynamics of the system is undistinguish-
able from the one determined as pg(t) = e~#(£oH{L1)+iNK)t 5 (0). Differentiating
this with respect to ¢, we obtain

@ pstt) = —ilLo + {L2))ps(t) + Kps (1) (3.53)

Here the relaxation superoperator K describes relaxation in the localized state; i.e.,
it differs from the Redfield form. Hence, we have obtained, owing to the different
regime investigated, a closed equation for pg(t) that is formally and physically
different from the Redfield one (3.33). Below, we will use it in several applications.

Two remarks should be made at this juncture. First, Schreiber, et al. [35]
recently started investigations, from essentially (3.33) in a weak-coupling regime
and finite coupling constant. They also investigated an approximation consisting
of omitting, by hand, particle overlap (transfer or hopping) integrals in R in (3.33).
They found violations, in the long-time asymptotics, of the stationary distribution
dictated by statistical thermodynamics. This was properly interpreted as an indi-
cation of simply the approximate character of the omission. On the other hand,

18for instance hopping terms of the type J[cl{cz + cgcl]
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the resulting equation is nothing but (3.53), that is, in the regime of competing in-
phasing (owing to the overlap integrals) and dephasing (owing to the bath induced
relaxation). Thus, although the authors consistently stuck to investigation of the
weak-coupling regime only, they obtained violations of statistical thermodynamics
that could not be disregarded as due to unjustified approximations. These viola-
tions should be taken quite seriously and as supporting our position concerning
limits of thermodynamics in the quantum world.

The second comment is connected with the standard practice for kinetic equa-
tions of extending the validity of equations like (3.33) or (3.53) to arbitrarily long
times. The Davies statement (3.50) means that (3.53) or (3.33) can be validly ap-
plied, for any finite strength of the coupling, only for finite time intervals limited
from above (¢t < 00). Beyond a critical time, nothing can be said using this type of
argument. Whether this (rather formal) warning should be taken seriously, for the
purposes of stationary states and from the point of view of physics,'® remains an
open question. Regardless, conclusions thus obtained can be supported by other
arguments, in particular those beyond the above derivation of (3.33) or (3.35) from
(3.8).

3.6 Quantum Kinetic and Non-Kinetic Models

We now unpack a series of eight quantum models that challenge statistical
thermodynamics, particularly the second law. Some of the models predict violation
in the sense of being able to determine, for instance, the heat conversion rate
into work and they are able to work cyclically, thereby explicitly violating the
Kelvin formulation of the law. The basic ideas will be presented as simple-cycle
or simple-step models. Once it is clear that the outcome is positive — acquired
work without compensation — and that the system returns to its original state,
the process can cycle. For example, in photosynthesis, after photon absorption
and electron transfer, the original state of the photosynthetic unit is recovered
and there is no question about the process being repeatable. Generalization of
our mechanisms to many particles should be straightforward, absent multiparticle
effects.

Models in the next subsections could be called ‘demon-like models’ since their
action is reminiscent of the Maxwell demon: gates opening and closing reaction
channels to achieve particle transfer. There are, however, other ways of character-
izing the operation of such models. For example, operation of the fish-trap model
(§3.6.1) can alternatively be characterized as being due to relaxation of the com-
plex scattering center plus the scattered particle in its intermediate state, before
the scattered particle is released again.

19and, what is even more important, for arbitrary kinetic equations.



76 Challenges to the Second Law

3.6.1 Fish-Trap Model
The fish-trap is the first truly quantum model leading to behavior challenging
the second law. Its first version was published in [36]; for more detailed theory
see [37]; a simplified version is discussed below [38]. To start, however, we will
proceed with its original form. Although it is reminiscent of the Maxwell demon,
the inspiration for its Hamiltonian came in 1996 from the molecular biology of
membrane pumps2’. One can profitably compare this to Gordon’s classically-
developed biochemical models (§5.2).

The system consists of a single particle on three sites and a two-level system
with a specific type of instability dependent on the particle position. The Hamil-
tonian can be written in the usual form

H=Hgs+ Hp+ Hs_p, (3.54)

with

Hs = J(cco + che-r) @ [d)(d] + I(eleo + cler) @ u)(ul
€
£l {ul — 1) (dl) @ [1 - 2c}eo]
HB = Z T“kabLbk,
k
Hsop = —— 5" heg (b + b Grllu)(d| + |d ; 3.55
5-B w (b + bL) @ {G[|u)(d] + |d){ul] + grcyco}- (3.55)
VN <

The sites (particle positions) are designated as m = —1, 0 and +1; sites ‘-1’ and
‘+1’ represent the left and right (later to be shown to be the input and output)
media for the system, respectively. Operators ¢}, and ¢, m = —1,0 or +1

designate the creation and annihilation operators at site m. For the single-particle
problem, we do not need their commutational (anticommutational) relations or
contingent particle spin; thus, spin is fully suppressed. More extended external
media can be attached on both sides. For example, this could be achieved by
adding to (3.55) a term Z;:nzfoo JonCh cn + :;:2:1 Iynch c, and assuming an
arbitrary number of particles involved. This would, however, only complicate the
treatment technically, yielding essentially no change in the physics of the process.
In (3.55), J and I are transfer (hopping or resonance) integrals connecting two sites
(media) ‘-1” and ‘+1’ with the central one represented by site ‘0’. Corresponding
terms, that is, the first and second term on the right hand side of (3.55), describe
the particle transfer from the left or right media to the site m = 0 and wice
versa. For the process investigated, there is no asymmetry needed between sites
-1’ and ‘41’ introduced by, e.g., values J # I. One can put simply J = I and the
system described works equally well. For any value of J, the ‘-1’—‘0’ and ‘0’—
‘-1’ transitions are (owing to hermicity of the first term on the right hand side of
(3.55)) equally probable if nothing happens upon the particle‘s arrival at site ‘0’
— and similarly for any value of I, the ‘0’—‘+1’ and ‘+1’—‘0’ transitions and the
second term on the right hand side of (3.55). Thus, the asymmetry of the flow

20This model cannot be directly applied to any such pump known at present.
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reported below is connected exclusively with what is going on with the rest of the
system when the particle appears at site ‘0’.

Site ‘0’ is understood to be attached to a central system representing, for in-
stance, a specific molecule. This system is assumed to have (in a given range of
energies of interest) two levels, with energies +¢/2 (with corresponding states |d)
and |u); we assume € > 0). At the moment when a particle is transferred to site
‘0’ attached to the central system, the relative order (on the energy axis) of the
two levels of the central system gets interchanged. (This, of course, causes insta-
bility of the central system with respect to the |d) — |u) transition, which is the
same effect as additional-load-induced instability of a ship in water.) Technically,
this imbalancing is due to the third term on the right hand side of (3.55) propor-
tional to 1 — 20860 and may be in reality due to correlation effects as the particle
transferred may, upon its transition to site 0, change the topology or orientation
of the central system in space as its originally stable conformation becomes ener-
getically disadvantageous. This is the case in some models of membrane pumps
and this particle-induced instability of the central system is the first distinguishing
feature of the model. As a simplifying assumption not influencing the physics of
the process and accepted here just for simplicity, we have assumed in (3.55) that
this imbalancing goes with preserving both the ‘centre-of-gravity’ as well as the
relative distance of the two levels on the energy axis.

The second important feature of the model is connected with the assumption
that the central system (together with the site ‘0’ attached to it) is open (i.e.,
able to accept from or return the particle) to only the left (site ‘-1’) or only the
right (site ‘+1°) as far as its state is respectively |d) or |u). (Remember that,
as assumed above, these are the stable states of the central system without and
with the attached particle, respectively.) In the Hamiltonian (3.55), this feature is
ensured by the multiplicative factors |d)(d| and |u){u| in the first and second term
in (3.55), respectively. One can imagine that before the particle arrives at site ‘07,
the stable configuration corresponds to state |d) of the two-level system. Upon the
arrival, such a configuration becomes unstable. Transition of the two-level system
to state |u) might then mean, for instance, moving site ‘0’ (together with the
particle) somewhere else in space. This could cause interruption of a molecular
chain via which the particle originally arrived, which amounts to blocking the
particle return channel. Like the Gordon models (§5.2) and the chemical system
in Chapter 7, this challenges common expectations of detailed balance.

The terms discussed so far define the Hamiltonian Hg of the system consisting
of the central system and the particle transferred. All the rest in the above model
is due to the assumed special form of the bath (here harmonic oscillators with
phonon energies hwy), and its interaction with the central system (here linear
in phonon creation and annihilation operators bz and b;). Constants Gy and g
represent, respectively, coupling constants of the central system and the particle
at site ‘0’ to the individual bath modes; N is the number of the modes. Index k
designates the individual modes and is, for technical simplicity, taken as a wave
vector of a running plane-wave phonon mode. As we shall argue mathematically
and explain in words below, at finite temperatures and under proper dephasing
conditions, this quantum model transfers particles preferably from the left to the
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right. After finishing one act of the transfer, the central system returns to its
original configuration, (i.e., to the ‘down’ state |d)), prepared to transfer another
particle. This is why (3.55) has the appellation swing or fish-trap model.

The physical regime is critical to this model; it must go beyond the limitations
of the weak-coupling regime to the bath. In fact, to get a commensurable dephasing
and in-phasing, we should assume

Hg poc X, Jocl o)\, (3.56)

and use the regime corresponding to (3.51). Simple physical reasoning reveals that
using the usual weak coupling theory with J o< I oc A, i.e., (3.52) would yield
bath-induced relaxation (i.e., dephasing) infinitely slower than the in-phasing in-
duced by the hopping transfer terms proportional to J, I. If so, the gates handling
the particle transfer, provided by terms |d){(d| and |u){u| in Hg, would not be able
to close (open) in time to hinder the particle back-transfer.

Owing to the form of the Hamiltonian of the model, the particle transfer is
accompanied by sufficiently fast re-relaxation between states |d) and |u) of the
two-level system. Hence, correlations between the particle position and state of the
two-level system are of utmost importance and should be described as rigorously
as possible. That is why it is desirable to work with the entire density matrix of the
system, which is represented by a 6 x 6 matrix p (t) = (a|ps(t)]7), |a) = Im)®|d)
or |m) ® |u), m = 1,2 or 3 (with |m) being the state with particle on site m).
Equations (3.53) are then, in the above regime, fully equivalent to (3.35) when
time ¢ in the upper limit of the integral is set to +00.2! The results are the same
as with application of the Tokuyama-Mori method [37], or with a simple standard
equation-of-motion method for Heisenberg operators [39]. In all cases, we get the
same set of 36 linear differential equations. For reasons of technical simplicity, we
give here their form for just g = 0. It reads

Pun A B 0 0 Pun
d| paa | _| € D 0O 0 | | paa
di | pud 0 0 - Pud
pdu 0 0 DRI DRI pdu
(3.57)
Here, we have used the matrix notation
(puu)T =

(plu,lu» Pou,0us Plu,lus; P—1u,0us P—1lu,lus POu,—lus POu,lus Plu,—1lu, plu,Ou)a

(Pdd)T

(Pld,lda P0d,0d> Pid,1d, P—1d,0d; P—1d,1d> Pod,—1d, Pod,1d; Pld,—1d, Pld,Od),

21This requires that t exceeds the initial time ty = 0 by more than a dephasing time of the
bath. In fact, we are interested in only the long-time behavior of the solution.
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(Pud)T =

<p—1u,—1d, POou,0ds Plu,ldy P—1u,0ds P—1u,1ds POu,—1ds POu,1d> Plu,—1d> Plu,0d

(3.58)
and similarly for pg,. Superscript ---T designates transposition. We have also
already applied the initial conditions (3.20) and (3.21), implying that there is no
inhomogeneous (initial-condition) term in (3.57). In the square matrix in (3.57),
all the elements are actually 9x 9 blocks. The whole set splits into two independent
sets of 18 equations each; we shall be interested only in that one for p,, and pgq4.
This reads, as in (3.57),

T, 0 0 0 0 0 0 0 0
0 -Iy 0 0 0 0 i/h 0  —il/h
0 0 -, 0 0 0 —il/h 0  iI/h
0 0 0 ko il/h 0 0 0 0
A=1| o 0 0 iI/h I, 0 0 0 0
0 0 0 0 0 k* 0 —il/h 0
0 iI/h —il/h 0 0 0 k* 0 0
0 0 0 0 0 —il/h 0 -T, 0
0 —il/h iI/h 0 0 0 0 0 k
(3.59)

Here k = —ie/h—0.5(I't +T'|), and - - -* designates complex conjugation. Further,
Ty = 2L S G2 (hwn) s ()5 (e — )
TN g k k) np(hwg k)

1
efr —1°

271

VSN zk: |Grl?(hwn)*[1 + np (hwy)]8(e — hw), np(z) = (3.60)

In these formulae, we as usual understand the thermodynamic limit of the bath
(converting 1/N >, ... into integrals) as performed in order to avoid problems
associated with Poincaré cycles. Clearly, np(z) is the Bose-Einstein distribution
of phonons with the reciprocal temperature [ entering the problem via the initial
density matrix pp of the reservoir. In I'y and I'}, one can recognize the lowest-
order Golden Rule up- and down transition rates between states |d) and |u). These
are known from the Pauli Master Equations, which describe the kinetics in quan-
tum systems involving a finite number of levels. Still, however, our theory is,
via inclusion of the off-diagonal elements of pg(t), more rigorous including many
higher-order processes.

In an analogous way, we can identify other blocks in (3.57). Block B is fully
diagonal, with diagonal elements Bi1,. .., Bgg equal to 'y, I'|, T'y, (T'1 +1))/2, Ty,
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Ty +T))/2, Ty +1y)/2, Ty and (I'y +1'))/2, respectively. Next,

-T; 0 0 iJ/h 0  —iJ/h 0 0 0
0 T, 0 —iJ/h 0  iJ/h 0 0 0
0 0 -y 0 0 0 0 0 0
iJ/h  —iJ/h 0 k* 0 0 0 0 0
D= 0 0 0 0 -T 0 —iJ/h 0 0
—iJ/h  iJ/h 0 0 0 k 0 0 0
0 0 0 0 —iJ/h 0 k 0 0

0 0 0 0 0 0 0 -T; iJ/h
0 0 0 0 0 0 0 iJ/h

(3.61)

As for the block C, it reads the same as B except for the interchange I't < I';.

It is interesting to consider what the effect might be of terms in Hg_p being
omitted by setting g = 0. Without going into details, the physical effect of such
terms consists in dephasing, reflected in the site off-diagonal elements of p4(t).
A detailed analysis [36] shows that taking this dephasing into account explicitly
would only cause at most additive corrections to the (...)44 up to (...)g9 diagonal
elements of blocks A and D (i.e., increasing only the rate of decay to zero of the
off-diagonal elements), but changing nothing in our primary conclusions.

With that, we can now try to find all the matrix elements in py,(t) and pqq(t)
from (3.57) — which is a double set of twice 18 linear differential equations —
for the desired elements of the system’s density matrix. The solution for the
diagonal elements (probabilities of finding the particle in the respective state)
Pou(t) = pruna(t) and Pog(t) = pnana(t), n = —1, 0 and 1 results in a superposi-
tion of a constant term and as many as 17 exponentials decaying to a stationary
solution. For each set of parameters and initial conditions separately, solutions can
be found numerically. As usual, the asymptotic (long-time) form of the solution is
determined by the right-eigenvector of the matrix of the set with zero eigenvalue.
Its left-right asymmetry can be seen from the asymmetry of the model as well as
the set (3.57). This right-eigenvector, however, i.e., the asymptotic form of the
solution at long times, can be found easily in the limiting case of very low tem-
peratures €/(kgT) — +oo without involving any numerics at all. In this case, I'y
disappears and one can verify the resulting asymmetry in the asymptotic solution,
checking by hand that

pld,ld(t — +OO) =1, (362)

with all other matrix elements of the density matrix p going to zero. From a fully
analytic solution, using Kramers rule, the error of this result at finite ¢/(kgT") can
be seen to be exponentially small (x I'T/T"} = exp(—e¢/(kgT))). Accordingly, at
high temperatures T > €/kp, the effect becomes negligible. This is not because of
suppression of the above transfer channel, but because of the thermally-activated
(bath-assisted) up-in-energy processes increase in efficiency with increasing tem-
perature. These competing processes fully mask the effect when T" — +oc.

Thus, we find that a particle initially anywhere in the system tends, with
increasing time, to one (right hand) side of the system, leaving its central part
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prepared to accept another particle and, thus, ready to repeat the process. Note
that (3.62) is not interpretable as a simple renormalization of particle energies.
Such cases are known in connection with the Debye-Waller renormalization of
the transfer integrals caused by the coupling to the bath, or as a result of a
self-consistent nonlinear formulation of the scenario involving of the carrier in a
polarizable medium. This renormalization changes the relative asymptotic popu-
lation of eigenstates of the Hamiltonian of the system, but does not change their
order on the energy axis. In terms of an effective temperature Teys, as deduced
from the relative asymptotic population of these states, T.f; may become even
appreciably greater than the physical temperature T', but never becomes negative.
The opposite is true in our situation. One can easily check that nothing is quali-
tatively changed in the solution when we raise the energy of site ‘+1’ by adding
an additional term § Hgdecl e to Hg. The excited eigenstate of Hg [1) ® |d) (with
asymptotic population equal to unity) is then intensively fed, in conflict with laws
of statistical thermodynamics. As the particle in such a state becomes asymp-
totically free, its energy (acquired at the cost of only the thermal energy for the
bath) can be used for other purposes, in conflict with the second law. With such a
surprising conclusion, one should explain in words how the particle transfers from
anywhere in the three-site chain to site ‘4+1’.

Assume we have the particle initially at, for instance, site —1 with the central
part (molecule) in the down-state with energy —e/2. This situation is energetically
advantageous and, thus, almost stationary unless a quantum hop, caused by the
transfer term (o< J in (3.55)), transfers the particle to site 0 joined with the
central system. This transfer is, of course, energetically disadvantageous since
such a down-state of the central system with the particle attached to it requires as
much energy as +¢/2, i.e., the energy difference e. Hence, this process should be
understood only as virtual (not energy conserving though the bath is not involved
in the —1 < 0 transfer). That is the reason we need the coherent hopping term
in the Hamiltonian and why one cannot describe this transfer by the Pauli Master
Equations.

As soon as the particle virtually attaches to the central system, the latter be-
comes energetically unstable and (unless the particle leaves it in between returning
to site —1) turns to the up-state with lower energy —e/2. This, however, makes
the particle unable to leave the central system to the left, but allows it to leave to
the right (site +1). Such a process is again not energy conserving (if the particle
leaves the central system, the latter has, in its up-state, again a high energy +¢/2)
so the process must be again be looked at as only virtual and be treated in the
complicated manner above. For small |I|, it may take a long time before such a
hop occurs. As far as it actually occurs (owing to the hopping term in (3.55) o I),
however, the central system again becomes unstable and goes again (with the help
of the interaction with the bath) to the down-state. This completes the cycle and
the system is ready to accept a new particle from the left.

There are several important points concerning this model and the process just
described:

e Under the above conditions, the process proceeds nearly uni-directionally.
We stress that this surprising feature is not owing to any omission of terms in
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the Hamiltonian (3.55) which would imply prohibiting the backward transfer.
To be explicit,

— the terms in our Hamiltonian which are responsible for the particle
transfers ‘ — 1’ < ‘0’ and ‘0’ < ‘+ 1’ are the first and the second terms
on the right hand side (3.55), respectively. They not only do allow the
backward transitions, but are also (necessarily owing to the hermicity
of the Hamiltonian) truly symmetric with respect to the back and forth
particle transitions.

— The system-bath interaction Hamiltonian Hg_p, the last term on the
right hand side of (3.55) does allow, and is the only term in the Hamil-
tonian which is responsible for, both the |u) — |d) and |d) — |u)
transitions. From these processes, as well as those mentioned in the
previous item, the backward transfer is not prohibited.

— The latter processes |u) — |d) and |d) — |u) are, however, not equally
probable. This is the very reason for our uni-directional particle flow
‘— 1" — “+1'. Again, however, we stress that this asymmetry has not
been incorporated in the model ‘by hand,’ e.g., by omission of anything
in the Hamiltonian of the model. These are the spontaneous processes
making up-in-energy and down-in-energy processes unequally probable.
This asymmetry in Nature — the existence of the spontaneous down-
in-energy processes in systems interacting with quantum baths — date
back to Einstein [40, 41, 42]. The left—right flow is simply a manifes-
tation of the natural up- and down-in-energy asymmetry.

e The transfer proceeds without any gain or loss in energy for the system.
If we assume the particle begins on the left (with the central part of the
system in the down-state) and ends on the right, the mean energy of the
system remains unchanged insofar as e = 0 (determined as a mean of the
Hamiltonian of the system Hg). With de # 0, however, the particle energy is
increased and the question arises as to the source of the energy increase. The
answer is that phonon emission or absorption processes mediate the particle
transfers in each elementary act of the combined process.

e It might seem that the system is lowering its entropy. Responding similarly
to above,

— there are problems with identification of the thermodynamic entropy
and the statistical (von Neumann) entropy of the system; and

— in connection with the second law, it is uncertain what is the corre-
sponding entropy of the full, closed (system + bath) complex since the
entropy of the bath cannot be determined. In the thermodynamic limit
of the bath, the bath’s entropy becomes infinite so it cannot be easily
discussed with a correspondingly high level of mathematical rigor.

In conclusion, the operation of the fish-trap can be interpreted as a kind of a
spontaneous self-organization. It is a quantum mechanical machine, driven
by thermal energy.
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3.6.2 Semi-Classical Fish-Trap Model

Assume the model above with the Hamiltonian in (3.55). The model is modified in
that the state of the central two-level system is now represented by a classical real
variable z(t). Its meaning is the mean value of |u)(u| — |d)(d|. This is legitimate
provided that the central system is sufficiently large (e.g., being represented by a
macromolecule or large protein). If z = —1 or +1, the system allows for the particle
to be transferred from (or to) the left (site ‘-1’) or the right (site ‘+1"), respectively.
The bath then formally falls out of the discussion; however, it still influences the
time-development of our swing variable z(t). For purposes of simple modeling,
it will be described as a single-exponential relaxation to a state which depends
on whether the particle resides on the central system or not. Thus, replacing
|d){d| and |u){u| in Hg in (3.55) by [1 — 2(¢)]/2 and [1 + 2(t)]/2, respectively, the
semi-classical version of the fish-trap model is defined by the Hamiltonian

Hsemiclass(t) = j(cT_lco + cgc—l)[l - Z(t>]

+I(cteo + che)[1 + 2()] — ez(t)cheo + decler, J=J/2, T =1)2. (3.63)
Here de is an up-in-energy shift of site ‘+1’. Equation (3.63) is clearly nothing
but a mean value (with respect to the state of the central system) of the first two
terms in Hg in (3.55). The third term in Hg is now, on the semi-classical level of
description, represented by a special form of the right hand side of the assumed
dynamical equation for z(t) (see (3.65)), determining to which value z(¢) would
relax provided that no particle transitions to and from the central system were
allowed (i.e., for J = I =0). The effect of Hg and Hg_p in (3.55) is then, in this
dynamical equation, represented by the relaxation rate constant (v in (3.65)), the
very form of which gives the relaxation of z(t).

The semi-classical Schrédinger equation for one-particle state U(t) reads in the
matrix form as

o Iﬂ,l(t)
Zha wo(t)
P1(t)
_ 0 J1-=z(t) 0 P-1(t)
= | J(1-=z()) —ez(t) I(1+ z(t)) Yo(t)
0 I(1+ z(t)) o€ P1(t)
(3.64)
Here 1, (t) are the usual quantum amplitudes of ﬁnding the particle at the re-
spective sites. Their definition is given by |U(¢)) = n__l U (t)cl Jvac). For the
z(t)-variable, we choose the above-mentioned dynamical equation in the form
0
570 ==t +1 - 2|40 (t)]?]. (3.65)

As for the initial condition, arbitrary values of z(0) between —1 and +1 and
arbitrary complex values of 1_1(0), 10(0) and v (0) fulfilling

+1
> [n(0))? =1 (3.66)

n=-—1
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are admissible. This model was studied in detail in [43].

The system of four equations (3.64-3.65) is nonlinear. This non-linearity is
somewhat unphysical since the standard Schrédinger equation with the quantum
Hamiltonian (3.54) is linear. The nonlinearity results from replacing the quantum
operator |u)(u| — |d){d| by its time-dependent mean value z(¢).

From (3.64), however, it follows that

5 It
a0 O ln@F =0. (3.67)
n=-—1
Thus, ;rifl [, (£)|? (=1 owing to (3.66)) is a conserved quantity. The Hamilto-
nian in (3.63) is time-dependent, owing to the time-dependence of z(t). Owing to
the nonlinearity, no non-stationary analytical solutions to (3.64-3.65) were found
explicitly. The first task in investigating the time-dependence of physical proper-
ties is an analysis of stationary states.
For simplicity, unless otherwise stated, we set de = 0. There are then three
stationary states of our semi-classical problem. The solutions (up to a phase factor)
are

Ey =0, 2(t) = —1,

P_1(t) 0
Yo(t) | =1 0O
Yii(t) 1
(3.68)
and??
Bag =V 2+ 12, 2(t) = 0,
@Z;J—l(g) -1 ij/(\/(lﬁﬁ) TV P+t
Py (t) V2 +I/ (VT2 + I?)
(3.69)

In state (3.68), the particle is already on the right hand side and the system is
able to accept another particle from the left. This solution corresponds to the
expected asymptotic state corresponding to (3.54), as we show below. This due
to the fact that the semi-classical replacement |u){u| — |d){d| — z(t) underlying
(3.63) becomes exact as long as we are in a state where the operator on the
left hand side assumes a sharp value (i.e., -1 in our case). Such an fortuitous
situation does not appear in other (including non-stationary) states, in particular
(3.69). In the corresponding states, the central system is in equilibrium with the
particle, which is partly on both sides. Such an ‘equilibrium’ would immediately

22For 8|IJ| < €2 # 4(J? + I?), two other stationary states exist with z = (—4I? +4J2 £

et —6412J2)/(? 4+ 412 4+ 4J2) # 0, z € (—1,+1). For our purposes, their detailed form as
well as their properties are unimportant.
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become disturbed once quantum fluctuations are taken into account. We have
in mind those fluctuations which result from the fact that the occupation-number
operator of the particle at site 0, that is, cgco, does not commute with the quantum
Hamiltonian (3.55). From that, quantum fluctuations appear for not only cgco but
also |u)(u| —|d)(d| (the quantum analog to z(t)). Classical treatment of the central
system does not, however, allow such a discussion. In addition to that, owing to
a simple form of (3.63) omitting the above dephasing processes important for the
very effect, the approximate semi-classical solution (3.69) cannot be taken seriously
from the point of view of the original quantum model (3.55).

Let us now, for the sake of generality as well as for physical implications,
admit de # 0. Negative values of de are from the point of view of implications less
relevant, so we mainly consider de > 0. Preliminary numerical studies based on the
system (3.64) and (3.65) show that the above fluctuations, omitted upon accepting
the semi-classical description of the central system, are in fact indispensable. That
is why numerical studies in [43] are based on a scheme whereby equations (3.64)
and (3.65) were solved on open intervals of time (¢;,_1,%;), i =1, 2, ..., t; = At -1,
to = 0, with continuity conditions imposed on ¥_1(t), |¢o(t)| and v (¢), as well
as z(t) in each point ¢ = ¢;. As for the phase of ¥y(¢;), it was always randomly
set upon reaching ¢ = ¢;. As is well known, noise can be admissibly added to the
Schrédinger equation provided we model it by an external stochastic potential;
the theory and practice are now well established. Physically, one can imagine that
such an instantaneous loss of phase of 1y could be owing to, for instance, molecules
from external media impinging on the central system. If their potential (as felt by
our particle at site ‘0’) is almost shot-like, the above instantaneous loss of phase
of ¥y becomes justified. It is not important for the final outcome of the particle
transfer process whether the impinging times t; are regular or not?3.

An independent issue is the averaging over the noise. It can, of course, be
performed appropriately only on the level of the density matrix. This will not
be done here. However, we do not need it for our purposes because we obtain
uni-directional transfer for any realization of the noise, assuming properly chosen
intensity of the dephasing. Thus, the averaging cannot obviate the uni-directional
transfer as the main result of the present model. Implications are at hand for such
an uphill uni-directional transfer to site ‘+1’ with de > 0 for the utilization of
this site energy acquired at the sole expense of interaction with the heat bath?*.
The above randomization scheme of the phases of 1y is not connected with any
unphysical energy flow to the particle. One can show that the only increase of the
particle energy, which is solely due to the randomization, is due to the breaking
of covalent bonding of the particle at site ‘0’ to its neighbors [43].

Solution to (3.64) and (3.65) can be represented as a path in a seven-dimensional
space of real variables e ¢,,, Sm, (n = —1,0,41), and z. The above stationary

230ne obtains dephasing with the fully quantum and responsive bath, too. This is connected
with suppression of the off-diagonal elements of the density matrix.

240ne could object to the idea of using the acquired site energy instead of that corresponding
to some extended particle states. The point is, however, that the above dephasing violates the
particle bonding between site ‘+1’ and the other sites. This makes the particle at site ‘41’
dynamically free to participate in ensuing dynamical processes.
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solutions are in fact periodic solutions in this space (limit cycles). For stationary
solutions of (3.69), all the 1,,(t) are nonzero and are determined up to a common
phase factor. Thus, the relative phase of, for instance, ¥y(t) and ¥ (t), is well
determined. The randomization of only the phase of 1y(t) at any randomization
event means a relatively long jump in the 7d-space. In other words, it brings the
path out of the neighborhood of the stationary solution and wandering in the 7d-
space begins anew. For the stationary solution of (3.68), however, the situation
is completely different. Here ©_1(t) = ¥o(t) = 0. Hence the randomization of
the phase of 1y has no effect; i.e., the path becomes resistive with respect to the
randomization. In other words, the solution of (3.68) remains stationary (i.e., as
a resistive limit cycle in the 7d-space) even with respect to any randomization
procedure of the type used above. This helps to explain what is going on even for
such long times that numerical data become unreliable.

Numerical studies indicate the following. The model — a semi-classical version
of the previous one whereby the opening and closing of the gate is given by a single
c-number variable z(¢) — diminishes the tendency of the particle toward final
localization at the site with the highest site energy compared with that observed
in the previous model. The reason is simple: using only one c-number variable
z(t), the possibility of describing strong correlations between the particle position
and state of the gate is greatly reduced. Nevertheless, for properly chosen chosen
rate of dephasing, the particle almost always ends up on site '+1’, irrespective
of initial distribution, the randomization process of the phase of ¥(t), and the
randomization times.

In order to understand the behavior obtained, several problems remain to be
solved. The following questions should be answered: (i) how it is that particle
energy is raised at the expense of the bath when the reorientations of the cen-
tral system (closing and opening) are always due to down-in-energy (spontaneous)
transitions of the central system; and (ii) how it is that the opening and closing of
the central system occurs ‘on average’ at a time proper to cause the ‘ —1" — ‘+1’
drain reported here. Note, proper timing is a precondition of the process. For
the second question, there is no answer except that we have observed this tim-
ing to be automatically ensured by (3.64-3.65) themselves. This suggests perhaps
deeper physics of the model, in particular the tendency toward one-way transfer
(‘1" — 4 1') contained in the original quantum fish-trap model [36, 37]. The
fish-trap was constructed specifically to yield the timing desired. As for the en-
ergy conservation arguments that could be raised against the process, note that
dephasing implies continuous energy exchange between the system and bath, thus,
final energy conservation is always possible. These results contradict the standard
formulation of the second law in the sense that particles acquire energy at the
expense of the bath and make it available for other applications?®.

25For example, one could add a leakage between sites 41’ and ’-1°, thus providing the particle
with a means to complete the cycle and release.
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3.6.3 Periodic Fish-Trap Model

Although we argued above that single-step processes are sufficient for these models,
generalizations showing a continuous cyclic activity would be desirable. Perhaps
the simplest one is to allow the particle to jump directly from ‘+1’ to -1’ so as to
form a circular dc particle flow -1’—‘0’—‘+1" —‘-1’. Connecting the particle to
a screw whose potential energy increases as it turns, collects the particle energy
gained from the bath thermal energy in a form of increasing potential energy of
the screw. This model was first reported in [44] and later in [45, 46]. An equivalent
but simpler derivation for the single-particle density matrix can be also found in
[39].

The Hamiltonian for this model can be written:

+oo
Hs = > {J(chy co.+ch,c1.) - [d){d]

L=—00

+I(CI,LCO¢ + CE,LCLL) ’ ‘u> <U| + K(CI,LC—LH‘l + CT—l,L+1cl7L)

1 +oo
P2 Bt mlchyema + S0 -2 3 chcou] -l ~ )l (3.70)

m=—1t=—o0 L

Notation is the same as in the fish-trap model. The differences are:

e We have added a screw (e.g., molecular, solid state) to the particle; its turns
on the thread are designated by ¢.

e The screw can be arbitrarily long; for formal reasons, we take it as infinite.
Position on the thread with the particle located at site m is designated as
m, L.

e Each forward step of the particle (—1,¢ — 0,¢,00 — +1,¢, 0r +10 — —1,1+1)
implies an increase of the (particle + screw) complex by A/3. Thus A is
the potential/mechanical energy acquired from the heat bath from a single
turn of the screw. In connection with this, the hopping integrals J, I, and K
represent not merely particle integrals, but also represent inertial properties
of the screw.

In (3.70), the back and forth transfers between any pair of the sites occur with
the same amplitude, as a consequence of the hermicity of Hg. The uni-directional
character of the process is not due to a contingent difference between these ampli-
tudes, but results exclusively from the existence of spontaneous processes between
states |u) and |d) of the central system.

As for the Hamiltonians of the bath Hpg, we assume the same form as in
(3.55). Finally, one should specify the Hamiltonian of the system-bath coupling
Hs_p. Keep in mind that there are two roles played by Hg_p. First is the
particle dephasing among different sites that conditions the breaking of covalent
bonds among the sites necessary for the particle flow. Second, Hg_p causes tran-
sitions between states |u) and |d) of our central system. These transfers ensure
the dynamic blocking of the particle hopping integrals mentioned above and, in
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connection with uncertainty relations, makes localization of the particle at one
site energetically disadvantageous — the underlying reason for the asymmetric
stationary flow. Such transfers between states |u) and |d) of the central system
could also cause particle dephasing, i.e., breaking of the particle covalent bonds.
Such a dephasing would become effective only in higher orders of the perturbation
theory. That is why we assume Hg_p consists of two terms which separately give
rise to the |u) < |d) transitions and the on-site dephasing. We take

+1

e 2 b+ 0 Gl ]+ ]+ Y S gchen)
k

m=—1t=—oc0

Hs_p=

=Hj p+HE 5. (3.71)

For the sake of technical simplicity, we assume that Hg_p and HZ_ p do not
interfere (by assuming, e.g., gxGj, = 0 for each k). This condition, however, does
not imply the existence of two different baths.

Here we report [39, 46] only on the form of the resulting equations of motion
for the single-particle density matrix paa,p8 = >4, o b, (t)%%, again in the regime
where the characteristic times of the particle trya’nsfer n/ |J |, &/|I|, and K/|K]|
become at least commensurable with the reciprocals of the bath-assisted relaxation
rates, i.e., ([y + )", Here I'| and I'; are the down-hill and up-hill Golden Rule
transfer rates between states |u) and |d) of our central system caused by Hg_ 5,
defined as

2
T = Ni}; (hwi)?|Grl*[1 + np (hwi)]8 (hwy, — €),
) = o S (e Gl (o) — €) = exp(—Ghen)Ty, (372)
k

where np(z) = [exp(32)—1]~! is the Bose-Einstein-Planck distribution for phonons
and f = 1/(kgT) is the reciprocal (initial) temperature of our phonon bath.
We further require that |J|/%, |I|/%, |[K|/h < 2T, where 2I" is the value of all
2L mn = 75 2o (hwr)? |9 — giP[1 + 2np(hw)]6y (hwy), m # n. Here 6,(x) de-
notes the J-function properly broadened by all the dephasing processes on the sites
involved?”. Thus, 2T is the pure dephasing rate competing with the formation of
the valence bonds that would otherwise stop the particle transfer — the whole
heat conversion process in which we are interested. These conditions imply that
the relevant physical regime is not one of weak coupling to the bath. The result
[45, 46, 39] could be again rewritten in a short-hand notations as follows. Again
arrange the 36 matrix elements p,~(t) in groups of nine designating

(puu)T =

26Here, a, b = 0, 1 designate the site, o, 8 = u or d designate the state of the central system,
and ¢ designates the turn of the screw.

27Those who are uncomfortable incorporating the broadening could, e.g., replace Hg_B in
(3.71) by another form incorporating two-phonon processes. This leads, however, to no qualita-
tive change.
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(plu,luv Pou,0us Plu,lus P—1u,0us P—1lu,lus POu,—lus POu,lus Plu,—1lu> plu,Ou)7

"=

(Pdd
(Pld,lda £0d,0ds Pid,1d, P—1d,0d; P—1d,1d> Pod,—1d; Pod,1d; Pld,—1d; P1d,0d>,
T
(pud)” =

<p—1u,—1d, POou,0ds Plu,ldy P—1u,0ds P—1u,1ds POu,—1ds POu,1d> Plu,—1d> Plu,0d

(3.73)
and similarly for pg,. Again, superscript -- -7 designates transposition. With that,
the resulting set reads

Puu A B 0 0 Puu
d| pa | _| C D 0 0 pdd
dt Pud N o 0 - Pud

Pdu 0 0 - Pdu

(3.74)

In the square matrix, all elements are 9 x 9 blocks. Again, the whole set splits into
two independent sets of 18 equations each. We are interested here in only that
one for py, and pgq. This reads as in (3.74) with typical forms for the 9 x 9 block
matrices A, B,C and D. In order to render the presentation as simply as possible,
we first completely neglect the Hamiltonian H¢_ 5 describing a direct coupling of
the particle to the bath, responsible for the above additional dephasing. A direct
calculation yields: A4 =

-T 0 0 0 iK/h 0 0 —iK/h 0
0 T 0 0 0 0 il /R 0 —il/h
0 0 -T 0 —iK/h 0  —il/h iK/h  il/h
0 0 0 ky il /R 0 0 0 —iK/h
iK/h 0 —iK/h il/h T 0 0 0 0
0 0 0 0 0 k*  iK/h  —il/h 0
0 il/h —il/h 0 0 iK/h kY 0 0
—iK/h 0 iK/h 0 0 —il/h 0 -Ty 0
0 —il/h  il/h  —iK/h 0 0 0 0 k_

(3.75)

Here ki = —ie/h—0.5(I'1+T)£iA/(3h) and I = I'|£iA/(3h), with all the rates
defined above, and - --* denotes complex conjugation. Via I'y and I'j, the initial
bath temperature T' (entering the problem through the initial bath density matrix
pp) enters the game. As for block B, it is fully diagonal with diagonal elements
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Biy,...,Bog equal to I'y, 'y, I'y, (I'y +1')/2, I'y, (I'y + 1) /2, (Iy +T))/2, Ty
and D =

-T 0 0 iJ/h  iK/h —iJ/h 0  —iK/h 0
0 -T 0 —iJ/h 0 iJ/h 0 0 0
0 0 T 0 —iK/h 0 0 iK/h 0
iJ/h  —iJ/h 0 k* 0 0 0 0 —iK/h
iK/h 0 —iK/h 0 - 0 —iJ/h 0 0
—iJ/h iJ/h 0 0 0 k. iK/h 0 0
0 0 0 0 —iJ/h  iK/h kg 0 0
—iK/h 0 iK/h 0 0 0 0 Ty iJ/h
0 0 0 —iK/h 0 0 0 iJ/h k*

(3.76)

In a similar way, here F% =Ty £i¢A/(3h). As for the block C, it reads the same as
B except for the interchange I't < I'j. The last issue is how to properly include
the second term H§_ 5 of Hs_p. The resulting additive contributions are simple:
nothing but an additional —2T" factor appears in 44, 55, 66, 77, 88, and 99 terms
of blocks A and D. This is assumed here.

The question arises: What is the mechanical output — rate of increase of the
potential energy — from heat conversion? We are interested in the stationary
case in which the left hand side of (3.74) goes to zero. Because the rank of the
set of (3.74) is less by one than the order, the set must be complemented by the
normalization condition

+1

m=-—1

Then (3.74) and (3.77) determine the relevant components of the density matrix
uniquely. From the physical meaning of the transfer rates, one can take the flow
as

J =T poa,0a — 't Pou,0u- (3.78)
Using (3.74), (3.78) can be given a number of other forms, e.g.,
2J 2K 2
J = —Smpou,1u = 5 SMp_14,0d = ——SM[P1u,—1u + P1d,—1d] = —SMp1,_1.
h h h h (3.79)

Numerically, one can now determine 7 and, from this, the mechanical output (rate
of heat conversion); it is
W=J-A. (3.80)

Numerical results can be found in [45, 46]. Summarizing,

e For I' — 0, the mechanical output disappears. This confirms the above
reasoning that valence bonds (becoming less and less violated by decreasing
I’ > 0) can stop the circulation of the particle, and with it, the whole conver-
sion process. With very high values of I" > 0, suppression of the off-diagonal
elements of the density matrix can also lead to suppression of the flow.



Chapter 3: Modern Challenges: Theory 91

e For constant I' > 0, the mechanical output increases with increasing A > 0
up to a critical value. (It is always positive.) This indicates that the system
works as a (periodic) perpetuum mobile of the second kind, converting heat
from the bath into the potential energy of the screw.

e Increasing A above the critical value, the rate of conversion decreases, but
remains nonzero.

e In the limit of high temperatures kT > e (classical limit), the rate of
conversion becomes zero, for any A > 0. Thus, the systems operates at
finite temperatures on purely quantum effects. This supports the discussion
above on the role of quantum correlations?®.

Significantly, this mechanism was used in a many-body version to challenge
other laws of thermodynamics [47].

3.6.4 Sewing Machine Model
The sewing machine model is also a single-cycle model, this time working with pairs
of particles. Two sorts of particles (designated c- and g-particles) are assumed
They can form an energetically disadvantageous, but perhaps long-lived bound
state. The latter would almost never appear were it not for an ‘agent’ (central
system) in the system acting as an endothermic catalyst binding the particles
together, leaving them coupled, while itself preparing to couple another unbound
pair. The second law violation arises after many cycles in utilizing the excess
concentration of energy-rich pairs, which store chemical energy accummulated at
the expense of the heat from the bath. The idea has appeared in simple [48] and
complex [49] forms.

The total Hamiltonian can be written as in (3.54). The Hamiltonian Hg of the
system is the sum:

HS = Hcen—sys + Hpart + Hcs—pa7't~ (381)

Hen—sys describes a central system (molecule acting as a catalyst), which we
assume to have just two eigenstates |u) and |d) with energies +¢/2. Thus,

Heen-sys = 5 llu)(ul = [d){d]] (3.82)

As for the particle Hamiltonian Hyq,¢, describing the above two types of particles,
we write it via the corresponding creation (or annihilation) operators cf, and g,
(¢m and g,,). The c-operators commute with g-operators as usual. As for the
commutation relations ‘c vs. ¢’ or ‘g vs. g’ (or anti-commutation), these will be
unimportant since, for the sake of simplicity, we assume only one c- and one g-
particle. Though generalization to greater number of particles and greater particle

28Here correlations are between the particle position and occupation of states |d) and |u) of
the central system, serving here as a Maxwellian gate.
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reservoirs is straightforward, for simplicity we deal with only a particle reservoir
consisting of just two sites (labeled 1 and 2). Thus, we have

Hpart = J(QIQQ + g;gl + CICQ + C;Cl)

+V(cleglgr + cheaghgn). (3.83)

We always assume for the c-g interaction, V' > 0. As for the interaction Hamilto-
nian between the central system and reservoir of particles, we assume it consists
of two terms,

27 "
HCS*P“” - Hcsfpart +H,

cs—part

Hy_pore = elld)(d] — [u){ulcfeoghgo. (3.84)

In connection with this, we assume our model also contains the third site (labeled
as 0, with creation operators of particles c(]; and gg) which we do not ascribe to
the particle reservoir, but which we assume is tightly connected with the central
system. The form H[, . is chosen in such a way that whenever the site 0
accepts both one c- and one g-particle, the central system with the Hamiltonian
Heen—sys + Hig_pqpy becomes unstable in the sense that the states |u) and |d),
having originally eigenenergies +e/2, acquire energies Fe/2. (We assume that
e > 0.) Physically, this can conceivably occur as a change of a stable molecular
configuration upon accepting a pair of particles. As for the HJ, . term in
(3.84) (part of the interaction between the central system and particle reservoir
transferring the particles between them), it will be specified below.

Before saying anything about the bath and system-bath coupling, we should
explain the motivation and physical ideas behind the model. The central system is
unstable upon accepting the c-g pair to site 0. Among macromolecules, many are
known to change their topology upon accepting ions or molecular species; common
examples would be ion channels in cell membranes. In the language of biology,
site 0 would be a receptor for the species in question. This idea for a receptor
instability is doubly incorporated into this Hamiltonian.

First, the change in the topology could physically bring the c-g pair together,
forcing the particles to form a bound state by overcoming the contingent potential
barrier (or potential step) between the particles. For instance, the central molecule,
being originally rod-like, and holding the pair at opposite ends could flex, bringing
them together. In this case, the central molecule must be sufficiently stiff in its
new topology; in other words, € should exceed the height of the potential barrier.

Second, if a process requires energy, in principle, the lacking energy could come
from the bath, making the process bath-assisted. This would be ineffective except
at very high temperatures when all the states of the system would become, at
long times, roughly equally populated. This is an uninteresting case. However,
in the microworld governed by quantum dynamics, processes are allowed which
seemingly contradict the energy conservation law. Tunneling is one such exam-
ple, but this is not a situation of interest here. Rather, we have in mind the
principle that localization of a particle can increase its kinetic and total energy
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owing to the quantum uncertainty relations?®. Hence, insofar as there are terms
in the Hamiltonian Hg allowing delocalization (in our case these will be provided
by H, ,.-t), the eigenstates of Hg will be, in accord with the variational prin-
ciple, at least partially delocalized. Thus, if we compile the eigenstates into a
time-dependent solution of the Schrodinger equation for the particles in the iso-
lated system ihd|U(t))/dt = Hg|¥(t)) and if we initially put our particles outside
site 0, we get from the solution that, with a non-zero probability, they will def-
initely appear later at site 0 (separately as well as simultaneously). This is a
purely quantum process which may bring both the c- and the g-particles to site
0, irrespective of how much site energy it costs. Notice that for this process, no
energy from the reservoir (bath) is needed since the bath was completely split off
in the Schrédinger equation. The bath energy and the interaction with the bath
enters the process only at the moment of turning it from the virtual-type to the
real-type process, as discussed below. This change of the character of the process
after bringing both particles to site ‘0’, without requiring the bath energy, will be
connected with the above instability of the central system upon accepting both the
¢’ and the ‘g’ particle, and the form of H[_,,,, to be introduced below (3.84).
We propose dynamlc closing of back reaction channels (forbidding the particles
to leave the site ‘0’ individually in the same way as they arrived here) once the
central system reorganizes on account of the receptor instability. So, it is not the
bringing of the particles to site ‘0’, but the ensuing ‘closing the gate behind them’
and opening of a new reaction channel for the particles to proceed in their bound
state that requires the interaction with the bath. As also argued below, however,
no activation energy is needed for this closing and opening the reaction channels
as these are mostly spontaneous (down-in-energy) processes with respect to the
bath.

Our system, working as a real molecular machine, could serve as an active cat-
alyst for reactions which would otherwise be completely impossible. By the word
‘active’ we mean a catalytic property which is not reducible to merely lowering
of potential barriers. We mean an active collecting the thermal energy if need
be, or at least borrowing it for awhile for virtual processes. Let us construct the
Hamiltonian.

For simplicity, we assume the 1 < 2 symmetry for our Hamiltonian. That
is why we can limit our considerations to just symmetric states. The symmetric
eigenstates of our particle Hamiltonian and the corresponding eigenenergies read

1
|p1) = {V+\/V2+16J2 clgl+0292)|vac>
VIV + V7T T 16722 + 162

+4J - \/5(‘3192 + 6291)Ua0>]

29 As a textbook example, consider the zero-point energy for a quantum oscillator. Its energy
lies above the minimum of the potential and the wave function has a Gaussian form around the
potential energy minimum. This is so because further localization of the particle at the potential
energy minimum would further lower the mean potential energy, but appreciably increase the
mean kinetic. The total energy must be minimal in the ground state and the compromise is the
zero-point energy.
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1
EYTt = SV VY2167,

1 |
62) = 7 s (cla] + clabloac
VIV + VVET 16722 + 162

1
HV + V2 + 1677 - ﬁ(cigi + cégi)lvacﬂ,

Epart — 8J2
2 V4 VV2 1672
1
|p3) = EH + chgbvac),
|64) = —=[g] + gllcf|vac),

V2

part __ ppart __
ERert — et — .

|65) = chai|vac),
EPt =0, (3.85)

Ignoring the antisymmetric states, Hp,qr¢ can be rewritten as

5
Hpare = Y [6:) EP*™ (). (3.86)

=1

. . . y
With this, we can now rewrite H/,_ .., as

H{spars = elld)(d] — [u){ul] @ |¢5)(¢s) (3.87)

and specify H/. . as

cs—par

I%WW=PQM%WMW%+@M+HC>®WM

+Q(|¢5><¢1| + H.C. > ® |uw)(ul. (3.88)

(Here H.C. means Hermitian Conjugate.) In words, we assume that the central
system allows different types of particle transitions (channels of the particle scat-
tering) in different physical configurations. The detailed form of (3.88) is chosen
for our model in the simplest version yielding the desired effect.

As for the thermodynamic bath, its detailed form is unimportant3®. We only
require that, in connection with the system-bath coupling, it yields the desired

30However, it cannot be dispersionless.
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transitions sufficiently fast among the different states of the central system. The
simplest version is that of non-interacting bosons (e.g., phonons)

Hp =Y hwyblbs. (3.89)
k

The same notation as above is used and the same applies to the system-bath
interaction. In its simplest form, causing relaxation between states of the central
system, it can be written

Hs_p = \/% ; hwk(bk + bT_k)
AGk[[u)(d] + |d){ul] + grlds){(Ps]}- (3.90)

Here N and Gy, are the number of bath modes (with index ‘k’ taken as a wave-
vector here) and a set of interaction constants. In the thermodynamic limit of
the bath, N tends to infinity and the sums (1/N)>,--- go to the usual inte-
grals. Since (3.90) allows |u) < |d) relaxation, our problem can be also viewed
as a slow combined particle scattering on a central system with relaxation be-
tween its intermediate states. Special attention should be devoted to the term in
(3.90) containing gi. This term is the simplest one rendering transversal relax-
ation (dephasing) processes. In order to understand the importance of dephasing,
one should realize that with (3.85), one can easily diagonalize the whole Hamilto-
nian of the system Hg (3.81). If the dephasing (transversal relaxation) were fully
omitted, one would get transitions among the corresponding eigenstates of Hg as
the only effect of the coupling to the bath. This is the standard way by which
the weak-coupling theories (second-order in Hg_p) yield transitions to the canon-
ical state. This means relaxation to practically the ground state at low enough
temperatures. The ground state of Hg is, however, not the desired asymptotic
state here. It contains components with our particles outside site ‘0’ as well as
at this site, with definite phase relations among them. These relations are due
to H;_,qr in (3.88) which must be, in the weak coupling (to the bath) theories,
taken as dominating over Hg_p in (3.90). In our model, however, we assume the
opposite relation between the roles of H, .., and Hg_p. This means that higher
orders in Hg_ g also become effective which cause, in addition to transitions, the
transversal relaxation. Physically, the meaning of the sufficiently strong transver-
sal relaxation (dephasing) consists in destroying the above tough phase relations
among individual components of the eigenstates of Hg, i.e., turning the above
transitions to those which are between the two eigenstates |u) and |d) of (3.82),
as already suggested by the form of the first term in (3.90) containing Gj. Such
a dephasing would be provided already by higher order terms in Gy, in particular
when these coupling constants are sufficiently strong. In order to see this effect
explicitly, one would, however, need a detailed higher-order theory, while the term
proportional to gx in (3.90) yields such dephasing processes immediately. Tech-
nically, the importance of such terms in Hg_p (3.90) proportional to g becomes
clear by realizing that with such a dephasing, the memory functions to be invoked
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become more strongly decaying functions of time; i.e., their time-integrals con-
verge better. From the point of the energy conservation, the importance of these
terms becomes clear from the observation that the asymptotic state of the system
lies at an energy well above the ground state of Hg. Thus, in order to make active
binding of the particles really effective, an intense energy exchange with the bath
is required®'. This means strong absorption as well as strong emission of boson
excitations in our bath. These processes are effectively provided by the second
term in Hg_p (3.90) « gg.

Let us briefly mention the order of energies of the Hamiltonian of the system
Hg, which is an important issue for weak-coupling (in Hg_p) kinetic theories.
In such approaches, system relaxation goes mostly to — and at low tempera-
tures, exclusively to — the ground state of Hg. Our theory, however, is not the
weak-coupling variety. Rather than strength of the system-bath coupling, the pa-
rameters P and Q in H/,_ .., in (3.88) play the role of the small parameters,
although no real expansion in powers of P and @ is used. As we will argue below,
|p1) ® |d) is actually the asymptotic state of the system (i.e., the particle bound
state |¢1) is practically the asymptotic state of the particle). This state is one of
the eigenstates of Hg at P = ) = 0 and remains approximately such at low (but
still finite) values of P and Q. The corresponding particle energy E; is appreciably
above all other particle energies F;, i = 2,...5 in (3.85) whenever V >> |J| > 0 —
the regime we have in mind here. This is what makes our model so challenging.

Technical details of the solution can be found in [49]. In short, time-convolution
(Nakajima-Zwanzig) Generalized Master Equations (TC-GME) are formulated
only for probabilities P, (t) of finding our system (central system plus particles)
in states |im) = |¢;) ® |m), i=1,...5, m = u or d.*> When the physical time ¢ goes
to infinity, the TC-GME becomes a homogeneous set of linear algebraic equations
for stationary probabilities Pj,,(t — +00). Complementing it by the normaliza-
tion condition, the set is solved and the stationary probabilities are expressable
via time-integrals of different memory functions entering the problem. Then the
critical points arrives: One cannot expand in powers of Hg_p; that would again
turn the treatment into the weak-coupling one. In accordance with the discussion
above concerning competition between bath-induced relaxation channels and those
corresponding to internal dynamics of the system, Hs_p + HJ,_,,., (the part of
the total Hamiltonian causing transitions) is taken as a perturbation. Expansion

in terms of Hg_p + H;_ 4, then reveals that:

e The usual detailed balance conditions relating equilibrium populations (via
the ratio of bath-assisted transfer rates) are not applicable to the present
situation. The reason is simple: We now treat stationary populations of
states that are not eigenstates of Hamiltonian Hg of the system. In accor-
dance with that, not only bath-assisted transfer rates influence populations
of individual states considered.

31The bath is the only source of energy at our disposal for the endothermic process investigated.
320ff-diagonal elements of the density matrix of the system are projected off; in this respect,
the method slightly differs from those above.
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e The solution yields, at low temperatures kpT < ¢,
Pii(+o00) = 1, (3.91)

with all other asymptotic probabilities being practically zero. Thus, owing
to action of the central system, the particles become coupled (in a bound
state) with the central system, while it prepares to start action on another
pair.

A picture of the process now emerges. The unbound c- and g-particles can
appear simultaneously at site 0 joined with the central system. This leads to an
instability of the central system, e.g., a change of topology, which in turn may
bring the particles together, leading to the formation of a bound state. Owing to
the new topology, the particles can then leave site 0 only as a bound pair. With the
desorption of the bound pair, the central system becomes unstable again, returns
to its original topology, and waits for another c-g pair to bind.

This system could play the role of a quantum microscopic sewing machine. It
is emphasized that the asymptotic state does not differ from the equilibrium state
due to some transitions lacking from excited states to the equilibrium state3, nor
due to any type of energy renormalization shifting the asymptotic state sufficiently
down in energy. The paradoxical result is solidly due to the active role played by
the central system and the proper combination of two properties: (1) instability of
its intermediate state (scatterer) during transition (scattering of the pair); and (2)
strong dependence of the scattering channels on the state of the central system,
owing to the matrix elements. These results contradict standard thermodynamics
by means of an up-in-energy transition at the cost of thermal energy of the bath.
This is an isothermal Maxwell demon.

3.6.5 Single Phonon Mode Model
This model is based on the observation that the existence of Maxwellian gate states
is not necessarily connected with the two-state character of the ‘central system’
as in the fish-trap family of models above. The closing or opening of the gate can
also be related to two different forms of the polaron deformation cloud around
the processed particle. Again, we discuss here just a single-cycle process [50, 51],
however, a continuously (periodically) operating system should also behave as
a bona fide perpetuum mobile of the second kind. Recently, a generalization to
the case of a gradual excitation on a ladder of states leading to a spontaneously
generated population inversion has been found to be possible [52].

As with the fish-trap model, the central part of this system is an oscillator.
Again, splitting the total Hamiltonian, as in (3.54), we have

Hs = J(c' e+ cle 1) @ b+ bt +29] + I(cler + cleg) @ [b+ b1

+oect ey + hw(bT +~vefeo) (b +yelco). (3.92)

33This can be verified by complementing the model with any transitions desired.
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Thus, we have one particle at three possible sites m = 0 or 1. Here ¢,, (or cf ),
are the annihilation (or creation) operators of our particle at site m. Next, b (bf)
designates the phonon annihilation (creation) operator of the oscillator, while hiw
is the phonon energy. The site energies of the particle located at m = —1, 0 or +1
are 0, 0 or Je, respectively. Thus, a particle located initially off site +1 requires
de > 0 energy to transfer to site +1. Undergirding the effect is an arbitrary real
parameter 7y that determines the shift of the oscillator coordinate upon formation
of a small polaron around particle at site ‘0.’

As for Hp and Hg_ g, we assume that the bath is connected to the system only
by its coupling to the system oscillator. Thus, for particle relaxation, the oscillator
plays the role of a bottle-neck. We do not require that J and I be very small, but
this regime is the easiest to understand. The point is that the oscillator always
relaxes to the canonical state in the representation of eigenstates of Hg|j=sa0-
This means it relaxes to

pose =1 —e ] Z [w)e 2y (3.93)
when the particle is at sites —1 or 1, or to
piun® = [1 = o Z Ve P (394)

when the particle is at site 0. Here

_ 1 Y4 N 1 T vin/

v) = m(b )710), 1) \/ﬁ(b +7)710%, (3.95)
and |0) and |0) are the corresponding oscillator ground states, defined by b|0) =0
and (b+7)|0’) = 0. Clearly, |0') = exp(y(b— b"))[0). Again, 8 = (kgT)~! is the
reciprocal temperature in the energy units. Ignoring details of Hg and Hg_ g, we
assume the oscillator relaxation in a simple Landau and Teller form, known for
more than 50 years [53]. This means exponential relaxation in the oscillator bases.

Let the Latin indices m,n,... = —1, 0 or +1 designate the sites and let the
Greek indices p,v,... = 0,1, 2, ... be the quantum numbers of the oscillator
(phonon occupation numbers). Let p(t) be the density matrix of the (parti-
cle+oscillator) system; i.e., pmu,ny(t) is its matrix in the representation of states
|mu) = |m) ® |u). Then equation (3.53) reads

.d
Z%Pmﬂ,ﬂﬂ(t) = Z Loy ,nv,pr qr Ppr gr (L)- (3.96)

pm,qk

Here Lonp.nvpr g i the four-(double)index matrix of the Liouville superoperator
L consisting of two parts as
L=Ls+ L (3.97)

Here Lg...=[Hg,...]/h; that is,

1
(LS)mu,nV,pTr,qn = ﬁ{(HS)mvaﬂ'éqﬁ,nV - (HS)qK,ny(smu,pﬂ'}- (398)
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As for the oscillator relaxation part of the Liouvillian £7¢, it has been assumed
to be described by the Landau-Teller relaxation,* which is different if the particle
resides at the site O or outside. Thus,

‘C:rﬁz,nu,p‘n',qn - 5mp5nq{(1 - §m,0)(1 - 6”70)16%1/777»"@

+05[(1 — 6m,0)5n70 + (Smp(l — 6n,0)] [K:m,,}m,ﬂ +ICL,V77T,K] + 6m706n,0K:1,u,7r,m}' (399)

Describing this relaxation in terms of the Generalized Stochastic Liouville equation
model [54, 55] in the Haken-Strobl-Reineker-like parametrization [56, 57], we get
Kivm e as

IC;,L,V,ﬂ',H = i(26p,71/§7r,n[7u7r - 6;1,7r Z ’7)\,;4] - (1 - 5H,V)6/A,7T5V,K Zh’)\,u + ’y)\,l/])7

A A
(3.100)
with the Landau-Teller [53] formula for the relaxation rate
Yoy = El(u + )0y, 41 + pexp(—=Bhw)oy, u—1)- (3.101)

Notice that, in contrast to the original Stochastic Liouville equation model, the
transfer rates 2, , are, in general, asymmetric here because of inclusion of sponta-
neous transfer processes v — p (with respect to the quantum bath). The constant
k is the only one reflecting the strength of the oscillator coupling to the bath. It
need not be small, in principle. As for K, , ., it describes the same relaxation,
but with the particle located at site 0. Thus, this relaxation is no longer to pcn!,
but rather to p<72. Hence, the matrix of the K’ relaxation superoperator should
be, in the basis of |v/) states, the same as that of the K in the basis of |v) states.
Hence,

K = > Al ) ) (RIN) K mn- (3.102)

Gt A

In order to see that the long-time values of the particle site-occupation probabilities
are not merely quasistationary values, but correspond to a new asymptotic state,
one can check by hand that the long-time asymptotic form of the density matrix
p(t) as obtained from (3.96) and (3.97-3.102) reads, for k& dominating over de/,
|J|/% and |I|/R as

p(+00) = > |m) P (+00)(m| @ piar" +10) Po(+00) (0] @ piai® + O
m==+1

). (3.103)

Etila

Analytically determining the site occupation probabilities P, (+00) in (3.103),
even in the above regime, is difficult. Anyway, (3.103) becomes diagonal in a basis
other than Hg. Thus, it appreciably differs from the standard canonical density
matrix proportional to exp(—fHg) to which p(+00) necessarily goes for small
enough % [19].

In order to understand the effect, let us start from an initial condition with the
particle at site ‘-1’ and the bath in its canonical state (3.93). This means that the

340ther types of relaxation yield qualitatively the same results.
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average value of the first term on the right hand side of (3.92), with respect to the
oscillator state, is equal to Hg = 2’7J(CT_100 + cgc,l). In other words, the particle
is permitted to come to site ‘0’ and return back to ‘-1’ unless something happens
with the oscillator in between. On the other hand, the mean value (with respect to
the oscillator) of the second term on the right hand side of (3.92) is zero; i.e., the
particle cannot (on average) immediately proceed to site ‘+1’. Assume, however,
that the particle really appeared partially at site ‘0’. Fast dephasing suppresses the
site off-diagonal elements in the particle density matrix pmn(t) = >_, pmpnu(t).
Thus, the particle is deprived of any phase relations between sites (bonding); i.e., it
is localized only at ‘-1’ or ‘0’. If the particle remains or succeeds in returning from
site ‘0’ to ‘-1’, the story begins again. In the other case, the oscillator succeeds in
re-relaxing to the canonical state (3.94). Then the mean value of b+b' with respect
to the canonical oscillator state (3.94) becomes equal to —2v. Hence, the same
mean values of the first and second terms on the right hand side of (3.92) become
0 and —2v1 (cg,cl + cJ{cO), respectively; i.e., effectively, the particle cannot return
to site ‘-1’, but can freely proceed to site ‘+1’. Then, however, the oscillator again
re-relaxes to the canonical state (3.93). Hence the return channel of the particle
to site ‘0’ effectively gets closed and the particle is forced to remain at site ‘+1°.

Such arguments apply of course only ‘on average’. A possible objection is that
the gates between sites -1’ and ‘0’, or ‘0’ and ‘+1’ never become fully closed
owing to fluctuations of the oscillator coordinate proportional to b + b around
its mean values. One should expect, in appropriate situations, an appreciable
increase of population at site ‘+1’ with respect to standard values provided by the
quantum statistics. Two points are stressed here. First, the expected increase in
the site occupation probability py1 +1 = Py1(t) is only on account of the above
dynamic behavior of the oscillator and can be effective even if the transfer to
site ‘41’ is connected with an appreciable increase of the (site-)energy of the
particle transferred (de in (3.92) becomes positive). Second, as there is no site-
diagonal coupling of the particle at site ‘+1’ to the oscillator, the increase of
Py1(t) cannot be explained as a polaron energy shift. (See also numerical data
for P, obtained from the equilibrium canonical distribution below which would
have to reflect this polaron shift.) In order to check for the effect expected, a
reliable numerical solution to (3.96-3.102) is necessary. This was solved by a
special procedure projecting off the oscillator. The result is that:

e Stationary values of particle population appreciably differ from those deter-
mined from the canonical density matrix.

e For de > 0, the highest site (site ‘+1’) may easily become populated with
probabilities exceeding 80 — 90%.

e Owing to the dephasing, bonding of the particle at site ‘+1’ to other sites
becomes appreciably violated. Thus, the particle is finally free to pass its
energy wherever it wishes; upon a simultaneous return of the particle to site
*-1’, we obtain a periodically working perpetuum mobile of the second kind,
similarly as for the fish-trap model above.
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e The effect of final transfer of the particle to the highest site is not forbidden
by energy conservation. On the contrary, because of the system dephasing
(reducing to a continuous exchange of energy of the system with the reser-
voir), the bath energy becomes the source of the increased site energy for
the particle.

e The system phonon mode works as a Maxwellian gate. Like with the fish-
trap model above, however, it does not need any external being (demon)
determining the proper timing of the gate, nor does it need any other exter-
nal interventions. The binary decision (close or open) goes on automatically,
as if the system alone performed the necessary measurement on the particle
position.

3.6.6 Phonon Continuum Model

A continuum of oscillators — not simply a single oscillator — can play the role of
the Maxwellian gate [58]. The bath then ceases to behave in a passive manner, but
becomes quite active. The cooperative self-organizational effects induced in the
bath by the transferred particle can appreciably modify detailed balance. Possible
effects include: (i) single-particle rectification (preferred unidirectional transfer);
(ii) prevailingly uphill particle transfer at the cost of energy of a single and typ-
ically nonequilibrium infinite bath; and (iii) induced particle self-organization.
The model provides a basis for treating dynamic self-organization in open quan-
tum systems, as well as other mechanisms that could lead to violations of basic
statistical-thermodynamic principles.

3.6.7 Exciton Diffusion Model

This model has been given a detailed mathematical theory [59, 60], but can be eas-
ily understood on grounds of well-founded theory and experimentally established
facts. These include:

e The equilibrium population of localized exciton levels is standardly negligible
and sharply decreases with increasing exciton level. Thus, higher-in-energy
exciton levels have lower exciton population (e; < ey implies populations
P > PQ)

e This inequality survives for even moderate local temperatures ascribed to
the levels (i.e., from statistical mechanics, for T7 < Tp < Tiea/er). Also,
when exciton (energy) flows are sufficiently small at small deviations from
equilibrium, the inequality P; > P; is preserved.

e The leading term connecting two local but spatially neighboring exciton lev-
els is due to resonance interaction J that is elastic®® ; thus, the transfer

35Usually, the corresponding transfer is written in the total Hamiltonian as J(cJ{cg + cgcl)7

where c;rn and ¢y, m = 1, 2 are the local exciton creation and annihilation operators.
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between such levels is energy conserving. Energy conservation for such real
— not virtual — transitions requires either broadening of the levels or assis-
tance of bath-assisted inelastic processes.

e For the case when the finite life-time effects for excitons (owing to bath-
assisted local exciton creation and annihilation processes) are commensu-
rable with the 1 < 2 transfers, real (non-virtual) processes with active par-
ticipation of the bath (that could make such processes inelastic, i.e., non-
symmetric) becomes a process of higher order in the perturbation, thus, they
become negligible with respect to elastic processes between tails of broad-
ened exciton levels. Such transfer processes are, however, elastic; that is,
they might be given by a transfer rate W that is the same for 1 — 2 and
2—1.

e Consequently, the net exciton flow 1 — 2 of the diffusive type reads W (P, —
Py); it is positive in this situation.

e Detailed reasoning [59, 60] shows that this prevailing 1 — exciton flow also
causes energy flow of the same orientation. Thus, if an exciton-transfer
channel is the only one connecting two baths at moderately different local
temperatures, the energy flow can go against the temperature step — in
sharp contradiction with the Clausius form of the second law.

This model can also be used to undercut the zeroth law of thermodynamics. Both
types of challenges, however, disappear in the high-temperature limit.

The Hamiltonian for the model (two exciton levels, each with its own bath of
harmonic oscillators) can be written in the form (3.54) or in one that makes the
two subsystems I and II explicit. That is,

H:HI—s—HH—l—J(cJ{cz—i—c;cl),

1
Hy=ecler + > hewbl bis + iy > gehws(er + el)(bre +b1,),

1
Hyp = exches + > huw,bh ba + N > Guhwy(cs + ) (bax +bY,).  (3.104)

For mathematical details see [59, 60]. Regardless of the transparent physical in-
terpretation and the mathematically rigorous treatment, real experimental tests
of this mechanism seem limited because the magnitude of the effect is expected to
be small.

3.6.8 Plasma Heat Pump Model

This is perhaps the only model of this genre that corresponds directly to laboratory
experiments. The system is a low-temperature plasma in a blackbody cavity (See
8.2 and §8.3). The quantum model of this classically conceived system comes in
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two slightly different forms [61, 62]. The Hamiltonian of the three-site model of
[61] reads, as in (3.54),

3
Hg = Zeja}aj + J(alay + alay) + K(abas + agag), (3.105)
=2

where the zero of energy is taken at site 0, representing the walls of the container.
Site 2 represents the plasma (€3 means electron energy inside bulk of the plasma)
while site 3 represents a physical probe (See Figure 8.1). For the plasma one
has e > e3 > 0. In this model the wall-plasma thermionic and plasma-probe
transitions are elastic; this is physically reasonable and corresponds to the standard
model of electron emission from solids. The load is the location at which the
electron can inelastically scatter during 3 < 1 transitions. (This corresponds to
dissipative electron flow from the probe to the walls through an electrical load.) In
the present model, the load is not conservative (e.g., a lossless motor) and, thus,
not a challenge to the Kelvin-Planck form of the second law; rather it is purely
dissipative (e.g., a resistor) and, therefore, a challenge to the Clausius form of
the second law. This requires that the resistor becomes slightly warmer than the
surrounding heat bath.

Relatively high temperatures are required for this model to support thermionic
emission. This suggests that inside the load, inelastic phonon-assisted scattering
processes prevail. This is why we assume, in (3.105), that the 3 < 1 transitions are
phonon-assisted. The spontaneous phonon-emission processes in the load and the
3 < 1 transfer rate imbalance are quantum mechanical effects; in fact, as will be
shown, they disappear in the classical limit (infinite temperature). For simplicity,
we assume only one electron in the system. The spontaneous phonon-emission
transitions 3 — 1 are the only source of imbalance that can cause the electron
flow 1 — 2 — 3 — 1, provided that the latter is not blocked by the electron
bonding among the sites. This means that we must definitely go beyond the weak
coupling theories, where the equilibrium canonical Gibbs distribution entails fully
developed bonding. Going beyond this limit corresponds to the modeled plasma
experiment, where any such bonding is unphysical.

In the quantum model and experimental system, the cyclic electron flow acts
as a heat pump. This requires two heat baths (I and IT). Bath T heats the electron
at the wall before it enters the plasma (1 < 2 transitions), while Bath II coincides
with the load and is coupled to the electron during 3 <~ 1 transitions. Both baths
are represented by harmonic phonons; hence,

Hp = Hp + HY,

Hp = hweblbe, HE =) hw.BlB,. (3.106)

The electron-bath coupling, Hs_ g, is given by
Hs p=H§ g+ HE p,

1
HéfB = N Z hvwﬁ1wﬁlgﬁl,ﬁza£a2(bm + bll)(bﬁz + blg)’

K1,K2
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1
HI o = i Z hweG(ata + alas). (3.107)

Identifying the perturbation with the sum of Hg_p with terms J(a{ag + a;al) +
K(alas + agag) from Hg and proceeding as above, from (3.53) we get

P11
. P22
A B B p33
dp . P12
5P _ . .
M S P21
P13
. P31
BT . C P23
P32
(3.108)
The blocks A, B, C are given as
—ihly 0 thl'| —J J
0 0 0 J —J
A= ihI'y 0 —ihly 0 0 ,
-J J 0 =2kl — 2T} — e 0
J —J 0 0 =20 — AT + €
0 0 0 0
0 0 -K K
-K 0 0 0
0O K o0 0
ik ih
771'1;1 o if?rl / 0
c— 2 3l te 0 —J
J 0 —2ihl — BT + €3 0
0 —J 0 —2ihl — 2T — €3
(3.109)

Here, €23 = €2 — €3, 'y =I'y + ', and we have also used the notation

2 1 9 9
ry= TN 2,; |hwi|*|gx 1B (Br1, hwy)d(hw, — €3),
2 1
Fi = %N ‘hwrc'z‘gﬂ'z[l + n’B(ﬂlla hwn)}é(hwﬁ - 63) = FT . eﬁ11637
_ 2 1

2l' = ?m Z |gN1,l€2 |2<h2wn1w,$2)2713 (ﬁb hwﬁl)[1+n3 (ﬁf? hw%z)]é(hwm _hwﬁz)>

R1,kR2
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1

nB(ﬂvz) = eﬁz — 1a (3110)

where Tyrry = 1/(kpfBi(rr)) are the initial temperatures of Baths I and II; and
np(0,z) is the Bose-Einstein phonon distribution function. I'y and I'j are the
Golden Rule formulae for transfer rates 1 — 3 and 3 — 1. Note that I'; and
I} are different solely in that the latter has a (1 + np) term, whereas the for-
mer has only ng. Physically, this corresponds to I'y involving only bath-assisted
induced transitions, whereas I'| involves both bath-assisted induced and bath-
assisted spontaneous transitions. Finally, 2I' determines the rate of dephasing
arising from local electron-energy fluctuations from Bath I and, also, the rate of
electron heating in the plasma. As usual, we disregard the inhomogeneous initial-
condition term on the right hand side of (3.108) by assuming a factorizable form
of the initial density matrix of the system and bath.

The system (3.108) can be tested numerically to get (in the stationary situation
with the complementing normalizing condition Z?n:l Pmm = 1) the heat transfer
rate from bath I to bath II. We assume that there is no other heat transfer channel
possible than that connected with the circular electron flow. Because 3 — 1
transitions should dominate over 3 « 3 ones, and because the former (latter)
always lead to the phonon emission to (absorption from) bath II, the heat flow
I-1I1

Q= 63[1_‘1/033 — FT/)H] (3.111)

should be nonzero. This can be proved analytically [61]. Analytically, it can also
be proved that Q is always positive; i.e., for arbitrary initial temperatures T; and
Tyr of the baths, the flow is always from bath I to bath II. Hence, for T;; > T7,
we have a spontaneous heat flow (not aided from outside) against a temperature
step from a colder bath to the warmer one. This corresponds to the plasma exper-
iment in which, presumably, heat spontaneously flows from the colder bath to the
warmer resistor. This sharply contradicts the second law in the Clausius formu-
lation. The paradoxical behavior is lifted both in the high-temperature and the
low-temperature limits. In the high temperature limit (k775 > €3) the underly-
ing spontaneous 3 — 1 processes becomes negligible. It also can be numerically
checked that the effect disappears when 77 — 0 since there is no heat in bath I
available to be transferred [62].

A classical explanation of this plasma system is given elsewhere (§8.2). It is
hoped that these two descriptions will set a precedent for understanding the many
seemingly disparate second law challenges under a common rubric.

3.7 Disputed Quantum Models

The following are notable quantum models which are less sanguine about the
prospects for second law violation.
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3.7.1 Porto Model

Recently, Porto [63] suggested a model consisting of a linear track and a rotor,
both consisting of charges interacting mutually by Coulombic forces only. When
system parameters are adjusted appropriately, the rotor moves uni-directionally,
collecting the energy of thermal fluctuations. The system is describable in terms of
Langevin equations in the zero-temperature limit. Porto stresses that the system
does not violate the second law. However, if one extends the system of Langevin
equations describing the rotor dynamics, a challenge to the second law does in fact
emerge. The interested reader is referred to [64], which presents results obtained
with a high numerical precision. Evidently, even classical counterparts of the Mori
or Tokuyama-Mori equations indicate second law violability.

3.7.2 Novotny Model

Although most systems described thus far are tightly connected with the Davies
formalism, other methods can obtain these results. Another approach mentioned
in the Appendix of [64] is based on the time-convolutionless GME. In this connec-
tion, we mention criticism that appeared in [66, 67]. The paper presents a model
that allows an exact solution by the non-equilibrium Greens function method. Its
conclusions differ markedly from those obtained by the Davies method. Signifi-
cantly, however, this conflicting model [66, 67] does not describe diffusion upon
which the prior results of [66, 67] rely. This makes the criticism problematic [65].

3.8 Kinetics in the DC Limit

The greatest uncertainty associated with kinetic theories is whether they can
be justified in the kinetic regime. The kinetic regime is limited at short time
scales by the decay of initial conditions, and on long time scales by the hydro-
dynamic regime. In only a few academic cases can the validity of the kinetic
equations be extended to infinitely long times (zero-frequency, dc limit). One such
set of cases involves the Generalized Master Equations (GME) (time-convolution
or time-convolutionless), provided one takes the limit of infinite time before per-
forming any approximations. Once we use an approximate treatment, however,
the infinite-time limit becomes open to discussion — much to the disappointment,
for instance, of those who apply the Boltzmann equation to the dc conductivity
problem. Fortunately, there is justification for their use in the models we have
treated thusfar. Some of the models are based on approaches where the dc limit
is performed on the level of the still exact GME, preceding any expansion in small
parameters of the problem. Examine, for instance, the model with active binding
of particles above [49], or the Appendix in [60].

With perturbations that correspond to the intermediate or strong coupling
regimes, one may start from formulations based on the time-convolutionless GME;
see, for example, (3.35). Then R(t) gives the usual Redfield relaxation superoper-
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ator (independent of time) when ¢ exceeds the appropriate bath relaxation. There
is no limitation on the validity of (3.35) from the side of long times.

This does not remove all doubts concerning kinetic theories.?® Some of the
reasons are as follows:

e All contemporary kinetic theories are either a consequence of the Liouville
equation for the density matrix of the (system + bath) complex, or are at
least compatible with it. The Liouville equation, as a consequence of the
Schrédinger equation, is part of the standard arsenal of quantum theory.
As such, there are still discussions about its applicability to arbitrarily long
times — at the very least, with respect to irreversibility in the macroworld
[68].

e The universally accepted procedure for theoretical modeling is that one con-
siders only those mechanisms that can be argued to be decisive. The basic
argument for choices of such mechanisms is the relative weight of the cor-
responding terms in the total Hamiltonian as measured by, for example,
dimensionless values of coupling constants. Unfortunately, arguments exist
that even negligible mechanisms can, in some cases, completely alter the
asymptotic state of a system [69]. Therefore, enormous care must be exer-
cised in deciding which results are stable in the long-time limit.

These considerations appreciably increase the role of experiment as an arbiter. Be-
low, we review both optimistic and pessimistic views concerning the predictability
and competence of theory to provide conclusions concerning the second law.

3.8.1 TC-GME and Mori

The above identity (3.6), valid for arbitrary projector P, may be understood as
a full equivalent of the Liouville equation (3.1) for the density psip(t) of the
isolated (system + bath) complex. It is obtained from the Liouville equation and
reduces to it for the special choice P = 1. Because of its connections with the
Liouville and Schrédinger equation — the former is a consequence of the latter
— (3.6) belongs to the basic tools for calculating time-dependence of expectation
values for quantum operators in the Schrédinger picture®”. Expectation values can
also be expressed in the Heisenberg picture in which the density matrix becomes
stationary and the time development is transferred to the operators

(A)(t) =Tr(p(t)A) = Tr(e_th/hp(O)eth/hA)
= Tr(p(0)A®)), (3.112)
where the Heisenberg operator is

A(t) = /7 gem it/ = oLt 4, (3.113)

36These concerns about kinetic approaches are not connected, per se, with the status of the
second law.

3TThese operators are, in the Schrédinger picture, always time-independent insofar as there is
no external time-dependent field acting on the system, bath, or both. We assume this situation
here.
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Hence, the question arises whether a counterpart of (3.6) exists that would be
equally general, but which would be equally advantageous whenever A acts only
on system variables®®. This counterpart is provided by the Mori identity [70, 1]

d )
-Gt = e LIDILG(0)—

t
/ LD LTPIET (1 - DY LG(0) dr 4+ " PIEN L — D)iLG(0).  (3.114)
0

Here D = D? is an arbitrary projector and G(0) is an arbitrary operator in the
Schrodinger picture. G(t) then designates the corresponding operator counterpart
in the Heisenberg picture. For D = 1, (3.114) reduces to a direct consequence of
definition (3.113).

Correspondence between (3.6) and (3.114) may be best seen upon: (i) choos-
ing G(0) in the form of set of operators |m)(n| (where |m), |n), etc. denote
arbitrary states in the Hilbert space of the system only); (ii) choosing D... =
> pa Ip){(q|Trs(|q)pB(p|...), Trpp®? = 1; (iii) multiplying (3.114) from the left by
the density matrix of the (system + bath) complex ps;p(0); and (iv) taking the
trace (Tr) of the result. What we obtain is nothing but (3.9), however, identity
(3.114) provides additional possibilities. For example, the problem of Brownian
particle (system) in a liquid (bath), one may choose G as a set of two (vector)
operators of the Brownian particle (coordinate and momentum). Then (3.114)
provides a unique and rigorous path to the quantum time-convolution counterpart
of standard classical Langevin equations for the Brownian particle [70, 1].

Let us return to the problem connected with the kinetic description provided
by (3.9). For purposes of evaluating pro and con arguments associated with the
violability of the second law, consider the long-time regime. In particular, we would
like to add another objection concerning the reliability of the long-time asymptotics
of the density matrix pg(t), as deduced from convolution equations of the type
(3.9). This type of objection applies not only to the Nakajima-Zwanzig method
for deriving asymptotics of pg(t)|i—+c via (3.6), but also against that based on
the Mori identity (3.114). The basic observation is that the initial condition term
in (3.6); I(t) = —iPLexp[—i(1 —P)L - (t — to)](1 — P)ps+5(to) can be rewritten
as [71, 72]

d . il
I(t) = [ +iPL]Pe L(t=10) ps . p(to)
t
+ [ PLeTAPILC=T) (1 P LPe Tt hg 5(te) dr. (3.115)

to

Thus, the Nakajima-Zwanzig identity (3.6) becomes

d ¢ .
[5; + PLIPps+5(t) +/ PLe =PI (1 — PYLPpg,p(T)dr
to

d . _il(t—
= [, +iPLPe £0=10) s p(to)+

384.e., A= Ag ® 15, where Ag acts in the Hilbert space of the system only.
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t
/ PLe M =PILE=T)(1 _ PYLPe =10 pg p(t) dr. (3.116)
to

From that, two immediate conclusions follow. First, the solution to (3.6) for the
‘relevant’ part of the density matrix Ppgyp(t) reads as

Pps+n(t) = Ple™ 7" pgsy p(to)]. (3.117)

This is trivial since it follows from comparison with (3.1). It shows, however, that
we have not deviated from what is given by standard formalism of quantum theory.
The second and more relevant conclusion stemming from (3.116) is connected with
the observation that it is the term

C..)(t) = tme*“l*?’)ﬁ(*f)a —P)LP-...(T)dT (3.118)

to

that gives rise, in (3.33-3.35), to the Redfield relaxation superoperator. The latter
is responsible for the reported challenge to the second law. On the other hand,
the term C(t) from (3.118) appears in (3.116) on both sides, i.e., also in the initial
condition term I(¢) on the right hand side of (3.116). Hence it cancels, having no
influence on the solution provided we make the same approximations in this term on
both sides of the Nakajima-Zwanzig identity (3.116), i.e., in the memory as well as
the initial condition term in the Time-Convolution Generalized Master Equations
for the density matrix pg(t). However, this is what contemporary kinetic theories
do not do. On the way to, e.g., (3.33), one first applies the initial condition (3.20-
3.21) implying that (1 — P)pg+p(to) = 0. This leads to the full omission of the
initial condition term. Only then one performs, for instance, the second-order
approximation on the memory kernel. In a large number of numerical studies, the
long-time solution strongly depends on the type and form of approximations in the
relaxation (Redfield) term. This is formally incompatible with the independence
of the solution (3.117) to distortions of the relaxation term. One can understand
this contradiction on grounds of the following: The initial condition term is, in
the exact formulation, proportional to (1—P)ps+p(tg). That is why it disappears
once (3.20-3.21) is accepted. This proportionality may, however, disappear once
we perform the same distortion (approximation) in C (as on the left hand side
of (3.116)) in the initial condition term I(¢) on the right hand side of (3.116)).
Keeping this, after approximating C on the left hand side, still I(¢) = 0 as a
consequence of (3.20-3.21) could be inconsistent. No studies exist thusfar of the
influence on initial condition terms I(t) # 0 induced by approximations in the
relaxation terms of the kinetic equations, even for (1 —7P)ps+p(to) = 0. This only
adds uncertainty to kinetic theories that are based on standard kinetic equations
— both those that agree with and those that conflict with the second law>?. The
point is that one can always, at least formally, solve the resulting GME in the long-
time limit and only then perform the corresponding expansions (approximations).
Methods from [49] or Appendix in [60] show this unambiguously.

39This uncertainty, however, is insufficient to question all the theoretical evidence mounting
against the second law that is derived from these formalisms.
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3.8.2 TCL-GME and Tokuyama-Mori

Similar comments to those directly above also apply to the Time-Convolutionless
Generalized Master Equation (TCL-GME) formalism based on either older works
by Fuliriski and Kramarczyk [8, 9, 10] or on more modern ones by Shibata, Hashit-
sume, Takahashi, and Shingu [6, 7] and the operator formalism by Tokuyama and
Mori (TM)[73]. The former TCL-GME formalism works, like the TC-GME one,
with the density matrix in the Schrédinger picture and is based on the time-local
identity (3.8). On the other hand, the TM formalism works from a time-local oper-
ator identity derived from the equations of motion for operators in the Heisenberg
picture. Specifically, the Tokuyama-Mori identity reads

t
%G(t) _ eiLtDiﬂG(O) + |:ei£tD/ e—i[,TDiﬁei(l—'D)LT dT_,’_ei(l—’D)Lt
0

-1

t
X (1-(1-1)) / e ETDiLe I PIET d7> (1 —D)iLG(0). (3.119)
0

Correspondence between (3.8) and (3.119) may be best seen upon: (i) choosing
the column of operators G(0) in form of set of operators |m)(n| (where |m), |n),
etc. denote arbitrary states in the Hilbert space of the system only); (ii) choosing
D...= Zp,q Ip){(q| Trs(|g)pB (p|...), Trpp? = 1; (iii) multiplying (3.119) from
the left by the density matrix of the (system + bath) complex ps;p(0); and
(iv) taking the trace (Tr) of the result. What we obtain is nothing but (3.17)
that is, however, the result of application of the Argyres-Kelley projector (3.3) to
(3.8). Identity (3.119) provides additional possibilities. Like (3.114), for example,
in the case of a Brownian particle (system) in a liquid (bath), one may choose
G as a set of two (vector) operators of the Brownian particle (coordinate and
momentum). Then (3.119) provides a unique and rigorous way to find the quantum
time-convolutionless counterpart of standard classical Langevin equations [73].

Having established a correspondence between the Tokuyama-Mori formalism
and TCL-GME, we now return to the latter formalism with two purposes in mind.
First, like with the TC-GME formalism, initial condition terms in the TCL-GME
theories are fully analogous to those in the TC-GME approaches mentioned in
the previous paragraph. Second, we raise new concerns, for the long-time limit,
about expansions in kinetic theories performed at finite times. For that, let us
first mention that (3.8) may be rewritten [71] as

dt

t—to . . -1
Ly [1 +i / eTHA=PILT (1 Py LPetET dT] 1 Ppsip(t) = J(t),
0

(3.120)
where the initial condition term is J(t) =
t—to ) ) -1 )
—iPL [1 +i / eTII=PIET (1 _ P) LPeltT dT} e M(I=PIL=t) (1-P) pgy B (to)
0

d =ty | -1
= |— +1PL |:1 —|—7,/ e_l(l—P)C“f’(l _ ’P)ﬁ’Pelﬁ‘T dT:|
0

yr Pe—iﬁ(t—to)pS+B (tO)-

(3.121)
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The first conclusion is that the solution to (3.8) (i.e., to TCL-GME (3.17)) is
again, like above, given by (3.117). (By the way, this provides the simplest proof
of equivalence of TC-GME with TCL-GME methods.) The second conclusion is
analogous to that above concerning the initial condition term: While J(¢) is pro-
portional to (1 —P)psyp(to) in the exact formulation and thus J(¢) = 0 whenever
initial condition (3.20-3.21) is accepted, it is no longer necessarily the case after
performing the same (e.g., second-order Born) approximation of the relaxation
-1

term iPL [1 +1 fot_to e tI=P)LT (1 — P)LPeET dr} on both the left hand side
of (3.120) and the right hand of (3.121). The conclusion is the same as with the
TC-GME approach.

In connection with all approximate theories, assume as usual that £ = Lo+ALq,
where ALy = #[AHy,...] indicates commutation with that part of AH; which is
considered a perturbation. Further assume that PLy = LoP. The usual expan-

sion of coefficients in any kinetic equation (e.g., Boltzmann, Pauli) that could be
connected with (3.8) goes, in (3.120), as

t—to ‘ -1
—iPL {1 +1i / e MU=PILT (1 _PYLPET dr | Ppsyp(t)
0

t—to ) )
~ —iPLPps.p(t) — N*PLy / e 0T (1 — P)LiPe 0T drPpsyp(t). (3.122)
0

On the other hand, one should realize that the integral involved on the left hand
side can be exactly calculated as

t—t
1+ z/ ’ e*i(lfp)[”(l — P)LPET dr =P + efi(lfp)c(t*t")(l — P)ew(t*t“).
0

(3.123)
On the right hand side of (3.123), A\L; appears only in exponentials. Hence,
(3.122), where the corresponding AL, appears only between the exponentials, is
formally based on expanding phase factors in the exponential. It is well known that
e.g., eIt 1—i¢t becomes a worse approximation as time ¢ increases, irrespective
of value of the small phase ¢. This raises suspicions about all contemporary kinetic
theories — particularly in their long-time, dc limit — for which small parameter
expansions are performed for finite times. The situation in (3.122) may be different
in the thermodynamic limit of the bath when destructive interference of individual
terms under the integral in (3.122) could change the situation at long times. In
summary, the structure of all terms, particularly higher order ones, and their long-
time behavior have not been adequately examined.

3.9 Theoretical Summary

In this chapter, several different theoretical methods have been applied to var-
ious individual models, raising formal theoretical challenges to the second law.
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Many of the methods deserve further scrutiny, but the general conclusion is that
the second law should be considered to be in theoretical jeopardy. Some of the
methods can be well justified when the proper order of steps is taken: first the
thermodynamic limit of the bath, followed by the long-time limit, and last, by
expansions in parameters.

Still, problems remain that are endemic to theoretical modeling and its philos-
ophy, for instance, whether the smallness of parameters in a mechanism justifies
its omission, especially when it is attached to a large parameter, like infinite time.
Strong coupling has not yet been satisfactorily formulated within GME — and
not only within GME. Many technical problems remain. For instance, the use
of Born-type approximations are forced upon us in situations where it is known
that they are probably inadequate. There is also a problem with proper inclusion
of renormalization in GME; e.g., polaron states have been implemented in this
chapter, but it is not settled how best to handle them. This problem persists even
in the most advanced models. Also, it is supposed that the Davies approach is
correct for kinetic theory, but this is doubted by some. Nonetheless, the present
bulk and body of theoretical evidence cast serious doubt on the absolute status of
the second law in the quantum realm. Clearly, more theoretical work is warranted.
This situation also underscores the importance of experiment.

The challenges in this chapter are predominantly formal in the sense that they
are disembodied; that is, they are neither couched in terms of concrete physi-
cal systems, nor in terms of realizable experiments — with the exception of the
plasma system (§3.6.8). One should remember that thermodynamics was founded
in the nineteenth century as an axiomatic science based on the generalization of
experimental observations. Hopefully, this remains true. If so, the meaning of
thermodynamics, and in particular the status of the second law, must ultimately
be settled in the laboratory. It is to this enterprise that we now turn.
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4

Low-Temperature
Experiments and Proposals

4.1 Introduction

Several independent groups are currently investigating low-temperature (7' <
10K) second law challenges that exploit uniquely quantum mechanical behav-
iors. Two of these invoke the phase transition from normal to superconducting
states and are currently under active experimental investigation (§4.3, §4.4), while
others rely on quantum entanglement and constitute theoretical proposals for ex-
periments (§4.6). We begin with a brief review of superconductivity.

4.2 Superconductivity

4.2.1 Introduction

Superconductivity is a macroscopic quantum phenomenon. The first and most ob-
vious evidence of it is the Meissner effect discovered by Meissner and Ochsenfeld
in 1933 when they observed that a superconductor in a weak magnetic field com-
pletely expels the field from the superconducting bulk except for a thin layer at
the surface [1]. This is a more fundamental aspect of superconductivity than the
disappearance of electrical resistance!, first discovered in mercury at low tempera-
tures by Kamerlingh Onnes in 1911. Superconductivity is a state with long-range

IElectrical resistance is effectively zero (p < 10726Qm).
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phase correlations, which are a consequence of Bose-Einstein condensation of elec-
tron pairs [2, 3, 4]. Pairs of electrons (fermions individually) form Cooper pairs
(which are bosons) via electron-phonon-electron interactions, as described by the
Bardeen-Cooper-Schrieffer theory [5].

Complete flux expulsion in the simple form of the Meissner effect occurs only
in weak magnetic fields. If the applied field is sufficiently strong and if demagneti-
zation becomes appreciable, then magnetic flux penetrates through the supercon-
ductor. This penetration differentiates the two types of superconductors, which
have differing signs of the wall energy associated with the interface between the
normal and superconducting domains. In Type-I superconductors the wall energy
is positive and, therefore, the magnetic flux contained in a single normal domain
consists of many flux quanta. (One magnetic flux quantum (¢, = 2’—;) is the small-
est unit of magnetic flux.) Type-II superconductors are characterized by negative
interface boundary surface energy (wall energy). In this case, magnetic flux can be
distributed through the superconductor such as to form either normal regions or a
mixed phase of superconducting and normal regions. The particular type of super-
conductivity is determined by a parameter x of the Ginzburg-Landau theory [6]:
at k < 1/4/2 the wall energy of a normal-superconducting interface is positive and
the superconductor is Type-I, while at x > 1/,/2 the wall energy is negative and
the superconductor is Type-II. The Ginzburg-Landau parameter x = \(T")/&(T)
relates the two characteristic lengths of superconductor: the penetration depth
A(T) and the coherence length £(7°). These have similar temperature dependences

6T~ &olt - (7)1

c

T 4172

) (11)
The penetration depth Ag, the scale length over which an external magnetic field
can penetrate into the superconductor, depends only on the density of supercon-
ducting pairs. The coherence length, &g, is the maximum scale length over which
Cooper pairs interact, or equivalently, it is the scale length over which supercon-
ductivity can be established or destroyed. £, decreases with the electron mean free
path in dirty superconductors. Type-II superconductivity occurs preferentially in
alloys or, more generally, in impure systems. Pure metals usually display Type-
I superconductivity. The penetration depth has approximately the same value
Ao =~ 1078 — 10~ "m for most superconductors, whereas the coherence length may
run from £(0) ~ 107%m in pure aluminium [7] down to £(0) < 10~°m in high
temperature superconductors [8].

The free energy of the superconducting phase fs(T) is less than that of the
normal phase f,(T) for temperatures lower than the critical one T < T,. The
superconductor’s exclusion of magnetic flux increases its free energy density by
“OQ—HQ: the price of diagmagnetism. The magnetic field H. at which the free energy
gain associated with electron condensation into Cooper pairs equals the free energy

cost of its diamagnetism, f,(T) — fs(T) = *LOQ—H? [9], is called the thermodynamic
critical field. There is another critical field, H.o = /2 kH,, called second critical

AT) = Mo[l — (
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field [9]. According to the Abrikosov theory [10] the transition between the normal
and superconducting vortex state of Type-II superconductors takes place at this
critical field Hq.o = /2 kH. > H.. However, in reality, this transition is observed
below H.o [11, 12, 13]. Samples of Type-I superconductors (for which /2 k < 1)
undergo transition between normal and superconducting phases at H. > H.y =
V2 kH. when their size or demagnetization coefficient are enough small. In the
opposite case of a finite demagnetization coefficient D, the intermediate state is
observed at H.(1 — D) < H < H,.. This state is a configuration consisting of a
mixture of normal and superconducting domains [9]. The critical field H,, above
which superconductivity of Type-I superconductors disappears, has been found to
follow, to good approximation, the empirical relation

H(T) = He[1 = (). (4.2)

Type-I superconductors have critical fields H, < 0.2T, whereas low-temperature
Type-II superconductors with high values of the Ginzburg-Landau parameter s
have H.2 = /2 kH, up to 50 T. High-temperature ceramic superconductors have
the second critical fields up to several hundred Teslas.

4.2.2 Magnetocaloric Effect

In non-zero fields, the normal-superconducting transition of Type-I supercon-
ductor is first order and has an associated latent heat. A sample heats (cools)
when making the transition to the superconducting (normal) state. This is the
magnetocaloric effect. (A non-quantum mechanical electrostatic analog, the elec-
trocaloric effect, is employed by Trupp in another second law challenge (§5.5 and
14)).

Although superconductors are perfect diamagnets, excluding magnetic flux
from their bulk interiors, surface-parallel fields penetrate shallowly into their outer
layers, decaying exponentially in strength with a characteristic penetration depth
(see (4.1)); that is, H(z) = H,e */*. Note that A — oo as T — T since A oc 1/+/n
[9], where ng x T, — T is the density of superconducting pairs; that is, as the pen-
etration depth becomes large at the transition temperature, the sample becomes
normal.

During transition between normal to superconducting phases, a sample usually
passes through an intermediate state wherein lamellae of normal phase riddle the
superconducting bulk. Samples of suitably small size (£ > d > 5\) can undergo
the normal-to-superconducting transition en masse, without passing through an
intermediate state. Given the inherently small sizes of £ and A, d is narrowly
restricted to roughly 107®m> d > 10~"m. In such a transition, there can be
no lamellae and the sample instantaneously can snap from one thermodynamic
equilibrium to the other. Type-I elemental superconductors that fit this criterion
include Sn (({/A) =4.5), In ((§/A =6.9), and Al ((£/X) = 32).

Whereas the intermediate state observed in large samples of Type-I supercon-
ductors have been investigated in detail [9], the thermodynamics of small samples
has not been well studied thus far. Although Pippard raised questions about
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the irreversible effects in the magnetization cycle of superconducting colloids as
early as 1952 [15], up to now there has been little experimental work devoted to
the magnetization and transition between normal and superconducting states of
small samples of Type-I superconductors. The resistive measurements of thin tin
whiskers made by Lutes and Maxwell as early as 1955 [16] show that an abrupt
transition from the superconducting to normal state can occur without the inter-
mediate state in samples of suitably small size. But only recently have techniques
been developed [17] that allow quantitative studies of thermodynamic properties of
individual superconducting particles at micron and sub-micron scale lengths. The
results of [18] demonstrate the irreversible effects in the magnetization cycle of Al
disks down to diameter > 0.3 um [17]. However, it is important to emphasize that
this irreversibility is conditioned by a high value of demagnetization coefficient
typical of thin disks. Reversible behaviour can be expected only in small samples
with geometries like spheres.

The combination of the magnetocaloric effect with reversible transition renders
the coherent magnetocaloric effect (CMCE). This is the key new insight underlying
Keefe’s second law challenge. Inherently, this is a quantum mechanical process that
relies on the superconductor’s long-range order parameter (wavefunction).

4.2.3 Little-Parks (LP) Effect

The Meissner effect is a quantum phenomena arising from the quantization of
momentum circulation of superconducting pairs. The generalized momentum of a
charge ¢ is given by p = mwv + qA, where A is the magnetic vector potential. For
Cooper pairs ¢ — 2e, where e is the charge of the electron. The quantization of
momentum circulation along a closed path is [2]

%pdl:nh:}{mvdﬂr%?e/ldl:m]{vdl+26<1>, (4.3)

where n is equal to zero for any closed path inside a simply-connected super-
conductor without a singularity in its wavefunction. Therefore, the persistent
electrical current j, = 2evn, should be maintained in outer layers of a supercon-
ductor (where the velocity of superconducting pairs v is determined by the relation
m¢§ v dl +2e® = 0), while in its interior bulk, where v = 0, the magnetic flux
should be absent (® = 0).

For a closed path in a multiply-connected superconductor — for example in
a loop — the integer n in (4.3) can be any value and the velocity circulation of

Cooper pairs should be
h ®
=—|n— — 4.4
%v dl - [n @0} (4.4)

where ®g = h/2e is the flux quantum (fluxoid). The magnetic flux inside the loop is
® = BS+ LI, where B is the magnetic induction induced by an external magnet;
S is the area of the loop; L is the inductance of the loop; I, = sj, = s2evn,
is the persistent current around the loop. The velocity (4.4) and the persistent
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current of the loop with weak screening (LI, < ®g) is a periodic function of
the magnetic flux ® ~ BS since velocity circulation (4.4) cannot be zero unless
® = nd; and the thermodynamic average value of the quantum number n is close
to an integer number n corresponding to minimum kinetic energy Cooper pairs,
i.e., to minimum & o v? o (n — ®/®g)?. This quantum periodicity leads to
experimentally observable effects.

The first such effect was observed by Little and Parks in 1962 [19]. The quan-
tum periodicity in the transition temperature T, of a superconducting cylinder
[19] or a loop [20] from enclosed magnetic flux following ® was explained as a con-
sequence of the periodic dependence of the free energy [19, 21, 2]: AT, x —&
—v% o< —(n — ®/®()2. For a cylinder or loop with a radius R, the dependence of
critical temperature with flux varies as

)

r.@) =T, |1 - - 22 (45)
where £(0) is its coherence length at 7' = 0. The values of (n — ®/®g) is con-
strained between -0.5 and 0.5. The relation (4.5) describes well the experimental
dependencies T,.(®) obtained from resistive measurements [19, 2, 20].

This explanation of the Little-Parks (LP) effect is not complete, however. It
does not explain, for instance, why the persistent current I, has been observed at
non-zero resistances (R > 0) in a number of studies. It is emphasized that the
observation of a persistent current I, — i.e., a direct current observed under ther-
modynamic equilibrium conditions, at a non-zero resistance R > 0 — contradicts
standard expectations since it implies power dissipation (RII%) and, by inference,
a direct current power source under equilibrium conditions. Nikulov advances this
as evidence for the potential violability of the second law.

Nikulov’s key insight is to reinterpret and extend the results of the LP ex-
periments to consideration of inhomogeneous superconducting loops immersed in
magnetic fields near their transition temperatures. From these he concludes that
thermal fluctuations can be used to drive electrical currents in the presence of
nonzero resistance, and by this achieve nonzero electrical dissipation at the expense
of thermal fluctuations alone. In essence, thermal energy is rectified into macro-
scopic currents, this in violation of the second law. Nikulov proposes a new force,
the quantum force — which arises from the exigencies of the quantum-to-classical,
superconducting-to-normal transition — to explain these fluctuation-induced cur-
rents [22]

4.3 Keefe CMCE Engine

4.3.1 Theory

Keefe proposes a simple thermodynamic process in which a small superconducting
sample is cycled through field-temperature (H-T) space and performs net work
solely at the expense of heat from a heat bath [23, 24]. (We use Keefe’s nomen-
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Figure 4.1: Pictorial overview of CMCE cycle.
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clature.) It incorporates facets of other standard H-T cycles [25, 26], but also
uniquely invokes the coherent magnetocaloric effect (CMCE).

The cycle is given pictorially and graphically in Figures 4.1 and 4.2. Figure
4.1 pictures a small armature of superconductor (meeting CMCE requirements)
moving in and out of a magnetic field during a full thermodynamic cycle. Here
“N” and “S/C” indicate normal and superconducting states. Figure 4.2 graphs
the armature’s progress in H-T space and indicates work and heat influxes and
effluxes.

The cycle begins with the armature (volume V') in the superconducting state
(point A in Figure 4.2) at thermodynamic coordinates (71, Hy). Until otherwise
noted, the armature is thermally insulated and the process proceeds adiabatically.

The armature is moved slightly closer to the magnet, thus increasing the mag-
netic field it experiences, so it passes to the normal side of the critical field (Tuyn)
curve (point B, Figure 4.2) with coordinates (71, H; + AH). (The magnetody-
namic work to move the armature is assumed to be zero.) The armature coherently
transitions to the normal state, evolves latent heat (LH;) and magnetocalorically
cools to Ts, given through

LH, =Ti(Sp1 — Se) =V - | CpdT (4.6)
T

With precisely orchestrated motion, the armature moves inwardly toward the
magnet as it cools (Process B, Figure 4.1) so as to skirt the normal side of the
Tuyn curve (B — C, Fig 2.). The armature, now fully cooled (point C, Figure
4.2) at coordinates (Ts, Hs), is removed slightly out of the field, thus reducing its
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Figure 4.2: Coherent magnetocaloric effect (CMCE) cycle on H-T phase diagram.

field to Ho — AH, and thereby crossing it back to the superconducting side of the
Tuyn curve (point D, Figure 4.1) at coordinates (Tz, Ho — AH). Latent heat is
evolved, magnetocalorically heating the armature to T3, given via

T3
LHy =T5(Spa — Ss2) =V - / CydT (4.7)
T>
Now on the superconducting side of the Tuyn curve again, the Meissner effect
kicks in and forcibly expels the magnetic field from the interior of the armature,
whereupon the armature is repelled out of the high field region near the magnet.

During its forcible expulsion (path D — E, Figure 4.2), the armature performs
work

2 2
W,y = M v (4.8)

Similarly as for path segment B — C' in Figure 4.2, the armature moves in
a precisely timed and coordinated fashion from D — FE so as to skirt the super-
conducting side of the Tuyn curve while magnetocalorically heating to T35 (and
also while simultaneously performing work). From point E (Figure 4.2), the su-
perconducting armature is moved further out of the field (Process D, Figure 4.1),
performing additional work

o(H? — H?
sz%.v (4.9)

and arrives at point F (Figure 4.2) with coordinates (15, Hi).
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Up to this point, processes have been adiabatic. From F' — A (Fig 2), however,
the superconducting armature is thermally coupled to the surrounding heat bath
(T1) and heats (T3 — T71), thus closing the cycle and absorbing heat

T
Q=Vv- [ Cdl (4.10)
T3

As described, heat transfer occurs only in the final step of the cycle; here heat is
absorbed. Since positive work is performed by the armature elsewhere in the cycle,
if the cycle operates in steady-state, the first law implies that the heat absorbed
from the heat bath is transformed into work.

Keefe calculated the net work per cycle expected for an exemplary tin armature
and cycle [27]. The cycle is specified by the vertex coordinates in Figure 4.2. In
terms of tin’s critical field (H.) and the critical temperature (7.), these are: (77,
H,) = (0.6T., 0.64H.), (T», H3) = (0.186T., 0.965H.), (T3, Hs) = (0.407T,
0.834H.,). For this cycle, the latent heat densities are: LH; = 340 J/m3, LHy =
50J/m3. The work density/cycle is: Wi = 88J/m?, W = 107J/m3, and the heat
density/cycle is: Q = 195J/m3. Satisfying the first law, Wi + Wy = Q, implies for
the second:

_ T dQ(T)
AS_—/TS AT <0 (4.11)

In principle, net work can be extracted from the CMCE cycle mechanically
(e.g., motor), electronically (e.g., generator), or via a heat pump. Given the theo-
retical limitation to small armatures, usable power would probably be extracted in
large arrays. Since operating frequencies for mechanical devices of this size can be
high (f ~ 10 — 10'2Hz), high output power densities might be achieved [28]. For
example, assuming an individual tin CMCE motor is 10 times larger (10® times
greater volume) than its armature (d ~ 10~ "m) and operates at f = 10°Hz,
based on tin’s calculated work density/cycle, its power density is estimated to be
P~ f(Wy + W) ~ 2 x 1012W /m?.

4.3.2 Discussion

The movement of normal phase electrons through the external magnetic field
should generate eddy currents, Ohmic heating, and entropy, with magnitude de-
pendent on the rapidity of movement. The armature’s coherent transition time
could be quite short, perhaps shorter than 107125 (i.e., 10~* the light travel time
across the armature) and the resultant latent heat should manifest itself as a tem-
perature change within a few vibrational periods of the lattice (Tiq¢tice ~ 107138),
therefore, the armature must cycle quickly to faithfully trace the Tuyn curve, per-
haps at THz frequencies. At these frequencies, one expects eddy current heating of
the normal electrons (and perhaps even of the superelectrons). Normal electrons
are known to interact with ac fields, causing dissipation and entropy production
in superconducting samples. Superelectrons can absorb electromagnetic radiation
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near the necessary projected operating frequency of the armature. Magnetic dipole
radiation could also be significant.

The physical magnet giving rise to the armature’s external magnetic field
should experience a back reaction and possibly internal induced electric fields
and dissipation due to the rapid and possibly sizable distortions of field by the
action of the armature. Given its small size, account should be taken of thermal
fluctuations and whether these might drive it inopportunely across the transition
line. Hysteresis should also be considered [29]. Finally, the sophistication in mi-
croscopic mechanical engineering required to realize a working CMCE engine is
beyond the present state of the art in micro- or nanomanufacturing, but may be
on the horizon.

Experiments are currently being pursued in Moscow, Russia to understand
better the CMCE effect as it pertains to Keefe’s engine. While falling short of
an actual engine test, they are laying necessary foundations. Indium spheres
(r ~1.25 x 10~"m, T, = 3.7K, £/\ = 6.9) will be analysed with a ballistic Hall
micromagnetometer as the sample is cycled through the normal-superconducting
transition (2.5K < T < 3K). Keefe, et al. will check predicted values of the transi-
tion field, the transition time scale, and investigate hysteresis, which can diminish
the efficiency of the thermodynamic cycle. Tight control of the sphere size and pu-
rity will be necessary since the CMCE effect is predicted to be robust only within
a narrow range of particle sizes.

In summary, the CMCE cycle appears theoretically compelling despite many
uncertainties surrounding superconducting and quantum processes in the meso-
scopic regime. Experimental considerations are problematic, but are currently
being investigated. The technical challenges in fabricating a working mechanical
CMCE engine are formidable.

4.4 Nikulov Inhomogeneous Loop

Over the last seven years, Zhilyaev, Dubonov, Nikulov, et al. have conducted
laboratory experiments that corroborate the essential features of Nikulov’s theory.
Recent independent theoretical analysis by Berger [30] also lends support to his
position. We introduce this challenge through Nikulov’s quantum force.

4.4.1 Quantum Force

Nikulov’s proposed quantum force arises from the fundamental differences between
classical and quantum states of electrons (or Cooper pairs) in a conducting (su-
perconducting) loop. In their classical state, electrons occupy a continuous energy
spectrum. Direct current cannot exist at equilibrium according to classical me-
chanics because the equilibrium distribution function f; for electrons depends on
v quadratically through kinetic energy fo(v?) such that the average thermody-
namic current ju, = qu v fo for this continuous distribution is an odd integral
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Jav = q J vfodv, which is equal to zero.

In contrast, in quantum mechanics a persistent current j,. can exist — i.e.,
direct current observed under equilibrium conditions — since the discrete sum
, Ep), 4 E(p)
Jpczqujvfo(ﬁ) = gzp:@—q@f(ﬁ) (4.12)

cannot be replaced by a continuous integral as in the classical case. The energy
difference between permitted states for a superconducting loop

mu? sh ® 17
E, = s]{Qns( > )dl = P {n - ] (4.13)

is much higher than the thermal energy AE = E(n+ 1) — E(n) ~ sh/dm(n; 1) >
kT in the closed superconducting state, when (n;')~' = (17! §,din;")~! ~ n,,
since the number of Cooper pairs sing is very large for any realistic superconduct-
ing loop [22]. (Here s and [ are the cross-sectional area and length of the loop wire
and ng is the number density of Cooper pairs.)? Thus, a transition between the
discrete spectrum, with well-spaced energy states AE = E(n+ 1) — E(n) > kT,
and the continuous spectrum AE = 0 takes place when a loop is switched between
superconducting states with different connectivity. The velocity v, and the mo-
mentum p of Cooper pair change at this transition: fl perdl = nh and the velocity
is defined by (4.4) in the closed superconducting state, whereas in the open super-
conducting state vy = 0 and fl Pundl = 2e®. The momentum circulation changes
from 2e® to nh at closing of the superconducting state because of the flux quanti-
zation: nh —2e® = h(n — ®/®;). The time rate of change of the momentum due
to reiterated switching of the loop between superconducting states (at frequency
f) is a force given by

F = §0a = pun)sat = biio) — )1 (4.14)
This is coined the quantum force [22], Fy = (pei — pun) f. Here (n) is the thermo-
dynamic average of the quantum number n.

The reiterated switching can be induced by external current [31], by external
electrical noise [32], or by equilibrium thermal fluctuations [22]. The quantum
force induced by thermal fluctuations is the Langevin force [33, 34]. It maintains
the persistent current in the presence of a damping force (dissipation via electrical
resistance) just as the classical Langevin force maintains the Nyquist’s noise cur-
rent in a classical normal metal loop. In contrast with the classical Langevin force,
however, the average value of the quantum force is not equal to zero at ® = nd
and ® = (n + 0.5)®g, when (n) — ®/®y # 0. Therefore, the persistent current
at R > 0 is an ordered Brownian motion with non-zero direct component, this
in contradistinction to Nyquist’s noise, which is completely chaotic. According to

2The energy difference AE = £(n+1)—E&(n) &~ sh/4lm(n; ') = 0 in the open superconducting
state since <n;1>_1 = 0 when the density of Cooper pairs equals zero ns = 0 in any loop segment.

As expected, no current flows in this case.
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Nikulov, this phenomenon violates the postulate of randomness under equilibrium
conditions, the same that saved the second law of thermodynamics at the begin-
ning of 20" century. Nikulov claims that I, # 0 at R > 0 is evidence of persistent
power generation RI?, the existence of which conflicts with the second law [33, 34].
The first experimental evidence of this phenomenon is, apparently, the original LP
experiment itself over 40 years ago [19, 20] — and, therefore, arguably it represents
the first experimentally-based second law challenge.

4.4.2 Inhomogeneous Superconducting Loop

By analogy with well-known theoretical and experimental results for normally
conductive loops with inhomogeneous (asymmetric) resistivity, voltage oscillations
are expected on a segment [ of an inhomogeneous superconducting loop, satisfying

(}TO_

o R. R o
[ls —T] LL(5) (4.15)

Here R;s and [ are the resistance and length of a loop segment; R; and [ are the
resistance and length of the whole of the loop, and I, is the persistent current.
Experimental results corroborate this [31, 32]. The quantum analogy to the clas-
sical electrical case appears valid since the quantum force is uniform around the
loop [22] just as the Faraday ‘voltage’ —d®/dt is uniform around a conventional
loop.

Segments of a superconducting loop can have different resistances Rjs/ls #
R;/l # 0 at nonzero currents I, # 0 if they are in the normal state at different
times when the loop is switched between superconducting states with different
connectivity. This is possible if loop segments, for example [, and [, have distinct
critical temperatures, specifically T., > Ty (See Figure 4.3.). The limiting case
is when one segment (I;) is switched between superconducting and normal states
while the other segment I, (with I, +1, = ) remains always in the superconducting
state (therefore, with R, = 0 and R = R}). This was considered by Nikulov in
[35]. A flat (h < R) and narrow (w < R) loop with h,w < A was analysed. He
found that the direct potential difference V;, [35]

lb<nsb> ) ) (qu)o — ‘b

Vo = Ry, ~
’ bp (lbnsa + la <nsb> )\%a

)Pb (4.16)

can be observed if the average value of the Cooper pair density (ny,) and resistivity
pp of the [, segment do not equal zero; i.e., if the segment is switched between
superconducting and normal states. Here Az, = (m/4e*ng,)'/? is the London
penetration length for segment [,. Relation (4.16) is valid for high switching
frequency (f > R,/L). At a low frequency (f < Rp/L), the amplitude of the
quantum oscillations of the dc voltage with respect to the magnetic field V,(®/®g)
is proportional to the switching frequency f [35, 22] and is given by

_hf
T 2

0

Vo= oL ((n) - 5002 (.17)
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Figure 4.3: Schematic of inhomogeneous mesoscopic superconducting loop with
different critical temperatures on segments a and b.

The correlation between the dc voltage and the frequency is similar to that of
Josephson [36, 32].

The crux of this second law challenge [35, 22] lies in the switching of the
segment by thermal fluctuations at T = T,,. In this case, V} is the persistent
voltage Vi, = V,, and P, = IV, = RyI2 = V,? /Ry is the persistent power [37]. It
can be shown in that the persistent power P, of a single loop cannot exceed the
total power of thermal fluctuations [35, 37, 22]:

kT)?
Pthermal I % (418)

According to (4.18), the persistent power of a single mesoscopic loop made from a
high-temperature superconductor (HT'SC) with T, ~ 100K is expected to be quite
small; i.e., P, < Pihermal ~ 1078W, while for a low-temperature superconductor
(T. ~ 10)K, one expects even less power: P, < Pinermar ~ 1071°W. (Notice
that in (4.18), power scales as T2.) However, since power sources can be stacked,
multiple inhomogeneous loops can be arranged in series such that their voltage V),
and power P, add. A series of N = 10® HTSC loops could, in theory, achieve dc
power up to P, < N(kT)?/h ~ 1 W [34] in an area ~ lem?. Power densities of
the order of 108W/m? might be possible [34].

In principle, the persistent voltage V;, can be measured experimentally even on a
single loop of low-temperature superconductor; one expects Vi, < Ry ((kT)?/h)°5 ~
10uV at T ~ 1 K and R, ~ 10 . For high-temperature superconductors and
loops in series, V, could be an order of magnitude greater. These voltages are the
primary objects of experimental study.
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Figure 4.4: Electron micrograph of Series I experiments’ symmetric (top) and
asymmetric (bottom) mesoscopic aluminum loops. I; and V; are current and
voltage contacts for each loop. Additional V3 contacts on lower loop.

4.4.3 Experiments

Experiments investigating Nikulov’s paradoxical effect date to 1997 with unpub-
lished observations by I.N. Zhilyaev of dc voltages on segments of mesoscopic su-
perconducting aluminum loops near their transition temperature, in the absence
of external current. Since then two mains series of experiments have been con-
ducted. The first (Series I) [33, 32] were to verify Zhilyaev’s initial results in light
of new theoretical understanding [35], and the second, more detailed series (Series
IT) examined multi-ring systems and the effects of external ac driving [31]. We
will review each.

4.4.3.1 Series 1

Series I experiments were conducted on single, symmetric or asymmetric, meso-
scopie, high-purity aluminum loops on silicon wafer substrates [33, 32]. Figure
4.4 is an electron micrograph of exemplary symmetric (top) and asymmetric (bot-
tom) loops with current and voltage contacts. Structures were fashioned with
electron beam lithography. Loops were 60nm thick and had diameters 2R =1,
2, or 4pum and linewidths w = 0.2pum and 0.4pm. The midpoint of the su-
perconductive resistive transition was roughly T, ~ 1.24K. Measurements were
carried out in a conventional helium-4 cryostat with base temperature of 1.2K.
Measurements of voltage oscillations were made in the narrow temperature range



130 Challenges to the Second Law

0.8
0.4
0
-0.4
-0.8

Vv

I ' | L I t

I
6 -4 -2 0

0. Mo
.n,:g; “.Ak {f_i%q r.q}@""g\\“g"'g’ fé 3

-0.
6 -4 2 0 2 4

O/D,,

Figure 4.5: Voltage oscillation versus @2 on single asymmetric loop measured
with V5 contacts (upper curve) and V3 contacts (lower curve). Loop parameters:

2R =4pm, w = 0.4pm, I, =0, T = 1.231K at bottom of resistive transition.

0.988T, < T < 0.994T.. Loop inhomogeneity (asymmetry) was created by reduc-
ing ring linewidth.

In principle [35], the dc voltage oscillation should not occur in homogeneous
(symmetric) loops, but should occur in inhomogeneous (asymmetric) loops. Ex-
periments qualitatively confirmed this prediction.

Figure 4.5 displays the dc voltage oscillation V( ) versus q> for a single
asymmetric loop (2R = 4um, w = 0.4um) measured at V5 contacts (upper curve)
and V3 contacts (lower curve) at T = 1.231K. Voltage oscillations are observed
both across the whole loop and across the segment that, because of its narrower
width, was a normal conductor.

For the symmetric loop, the voltage oscillations, (V4 = I1 Ry) followed expecta-
tions of standard LP oscillations; that is, when I,,, = I; = 0, the voltage oscillations
disappeared (V7 = 0). In contrast, the voltage oscillations on the asymmetric loop
did not disappear for Iy = 0. In particular, voltages of magnitude V3 ~ 0.1uV
were observed on the asymmetric segment (Figure 4.6), when Io = 0. This was
observed in the narrow temperature range at the bottom of the resistive transition
AT =T — T, ~ 0.1K. (Larger V3 were observed at lower temperatures.) This
stark difference in behavior between symmetric and asymmetric loops agrees with
theoretical predictions [35].

The researchers raise the caution that external noise — rather than purely
thermal fluctuations — cannot be ruled out as a cause for the observed dc volt-
ages. This issue partially motivated the next series of experiments.
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Figure 4.6: Electron micrograph of array of 20 asymmetric aluminum loops for
Series II experiments. Current Al imposed through I — I contacts. Voltage
contacts V1 — V8.

4.4.3.2 Series 11

Series II experiments were conducted on systems of either 3 or 20 asymmetric
mesoscopic aluminum loops, again deposited on Si wafers and fashioned using
electron beam lithography [31]. Figure 4.6 shows an array of 20 loops. All loops
had diameters 2R = 4um and thicknesses 40nm. The inhomogenities (asymme-
tries) consisted of having one half of each loop drawn with linewidth w = 0.2um
and the other with w = 0.4um. Resistance and current oscillations were studied in
the range 0.957, < T < 0.987,, where T, is the midpoint of the superconducting
resistive transition, T, ~ 1.3K.

As in Series I, measurements were performed in a helium-4 cryostat and a mag-
netic field was applied perpendicularly to the rings by a superconducting coil. Un-
like Series I, the rings were driven by an external ac current, I, = Alsin(27 foct)
in the range 10°Hz< f,. < 10°Hz, with amplitude OuA< AI < 50pA between
contacts I — I in Figure 4.6. I,. was used to understand how noise (thermal or
spurious background) induces voltages in the loops. Voltages were measured be-
tween contacts labeled V1 —V8 in Figure 4.6, thus allowing summation of voltages
in series loops to be tested.

DC-voltage oscillations were measured across single and multiple loops at var-
ious magnetic field strengths (B = ®/7R?) as a function of ac-current magnitude
AT and frequency f,.. The magnitude of voltage oscillations V(q%) was found
to be independent of f,. over the frequency range explored (102> — 10°Hz), but
was highly dependent on AI. (Independence of dc voltage from f,. is not sur-



132 Challenges to the Second Law

-20 -10 0 10 20
0

Figure 4.7: Voltage oscillation V(q%) on a single asymmetric loop versus % for
different magnitudes of I, at f,. = 2.03kHz and T' = 1.280K = 0.977,. All traces
except Al = 3.5uA are displaced vertically.

prising since, compared with the maximum possible switching frequency ( frmaz ~
10 — 10'2Hz), the ratio fuc/fmaz ~ 0, such that the driving field is effectively
static.)

Figure 4.7 displays plots of V((}%) versus q% across a single loop for seven values
of Al at temperature T' = 1.280K and frequency f = 2.03kHz. For all traces, at
large values of ®/®, (i.e., | /P, |> 10), one has V' ~ 0 because of the supression
of superconductivity at high imposed field values. The lowest trace (Al = 3uA)
displays no V(q%) voltage oscillations below a critical threshold current, Al., for
| @/®, |< 5. As the imposed field is increased, the critical current Al is reduced
so that voltage oscillation appear. As noted earlier, however, they disappear again
at | ®/®, |> 10 as the aluminum superconductivity is supressed by the imposed
field.

On the next trace up (AI = 3.5uA), the voltage oscillations are most robust,
just beyond the critical threshold current. For large values of Al beyond Al
the voltage oscillations (higher vertical traces in Figure 4.7) again decrease pro-
portionately because of suppression by Al-induced magnetic fields.

Loop oscillation voltages can be summed in series. In Figure 4.8, voltage oscil-
lations V((}%) are plotted versus ®/®q for two series cases: 3 loops and 20 loops.
A comparison is less quantitative than desired since the experimental parameters
are distinct for each case (See Figure 4.8 caption for details.), but a trend is ev-
ident: The AV magnitudes for 20 loops is on the order of 7 times greater than
for 3 loops, which in turn is roughly 3 times greater than for 1 loop (Figure 4.4).
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Figure 4.8: Series summation of loop voltage oscillations for 2 loop arrays. 20-
loop array [fe. = 1.2kHz, AT = 3.2uA, T = 1.245K=0.97T.]; 3-loop array [f.c =
555kHz, AI = 4.5pA, T = 1.264K=0.96T].

Specifically, voltage oscillations were observed up to 10V for a single loop, up to
40uV for 3 loops in series and up to 300uV for 20 loops in series.

The quantum oscillations in Figures 4.7 and 4.8 can be attributed to loop
switchings between superconducting states with different connectivity, as induced
by the external current [31], whereas those in Figure 4.5 possibly could be induced
by external electrical noise. Neither result directly contradicts the second law be-
cause the source of the observed dc power is not equilibrium thermal fluctuations.
However, it is significant that the dc voltages observed on Figures 5,7,8 are induced
by loop switchings near the critical temperature T' =~ T, thereby corroborating a
key aspect of the theory.

Recent theoretical and numerical work by Berger [30] lends strong qualitative
support to the experimental work of Dubonos, Nikulov, et al. [31-37]. Berger stud-
ied a superconducting loop with two, unequal weak links. The loop was held near
T. and was threaded with magnetic flux. Although it does not match Nikulov’s
system exactly, it does bear strong physical similarities. Furthermore, it can be
modeled by textbook procedures for Josephson junctions and can be compared
directly to related work on Josephson rectifying ratchets [38, 39, 40].

Berger found that when loop superconductivity was broken by thermal fluctu-
ations and resistive noise (in the vicinity of T.), the average dc loop voltage did
not vanish and showed qualitatively the same V((}%) versus ¢ /P flux dependence
and the same frequency independence as was predicted and observed by Nikulov,
et al. He also reported the same V(q%) dependence in the presence of ac current
AI. (Compare, for example, Figure 4.5 in [30] with Figure 4.6 [31].)
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It is stressed that, while Berger’s study shows strong qualitative agreement with
the fundamental processes predicted and observed by Dubonos, Nikulov, et al., the
quantitative agreement is poor. Some of these differences might be attributable
to the differences in the models.

4.4.4 Discussion

The theory and experiments by Nikulov, Dubonos, et al. — and their further in-
dependent theoretical corroboration by Berger [30] — represent a cogent challenge
to the second law. Conclusive violation, however, cannot be claimed for several
reasons. First, only one of the physical variables necessary to establish dissipation
was measured experimentally; the other was inferred from theory. Ideally, both
should be measured simultaneously by independent means. Second, an unambigu-
ous experimental measurement of dissipation (local heating or radiation emission)
should be made and, ideally, some global accounting of energy (work plus heat)
should be carried out. Third, in no experiment has it been clearly established
that thermal fluctuations were the source of the experimentally measured voltage
oscillations and inferred persistent currents. Fourth, the experimental apparatus
and experimenter surely generated far more entropy than could be negated by the
loops.

The extreme experimental and physical requirements of this system (helium-4
cryostats, vacuum systems, microscale fabrication) probably make it commercially
impractical unless perhaps high-temperature superconductors can be employed.
On the other hand, as an experimentally-based challenge, it holds much promise.

%.5 Bose-Einstein Condensation and the Second
aw

Keefe’s and Nikulov’s paradoxes share deep similarities. Both capitalize on the
normal-to-superconducting transition — the transition from classical mechanical
to quantum mechanical behavior — and both operate at the borderline between
the two. In many respects, they can be considered quantum thermal ratchets.
Keefe’s CMCE engine exploits the transition induced by magnetic field strength
near the critical field (H.) and, in its primary incarnation, delivers mechanical
work. Nikulov’s inhomogeneous mesoscopic loop exploits the transition induced
by thermal fluctuations near the critical temperature (7..) and delivers electrical
work. Both exploit the exigency of Bose-Einstein condensation and the persistent
current®: the spontaneous drive to order as the system falls into a single, macro-
scopic quantum state. In Keefe’s case, this order is found in the diamagnetic
persistent current of the Meisner-Oschenfeld effect whereby mechanical work is
extracted as the armature is expelled from the high field region. In Nikulov’s case,

3Persistent currents have been claimed in normal metal [41] and semiconductor [42] mesoscopic
loops.
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again the order is in the form of a supercurrent, this time summoned by thermal
fluctuations via the Little-Parks effect.

In light of their simularities, these two challenges suggest a deeper, unifying
principle may be connecting them. They also suggest a fundamental limitation to
the second law in processes involving the transition from classical mechanical to
quantum behavior. Nikulov’s quantum force may hint at this deeper principle, but
it possibly does not go deep enough [22]. At a more fundamental level, the behavior
of bosons in Bose-Einstein condensation is antipodal to the behavior of fermions
subject to Pauli exclusion. The former intrinsically moves a multiparticle system
toward a state of low entropy (single wavefunction), while the latter guarantees
a state of relatively high entropy (no two particles in the same state). Neither
quantum tendency arises from thermodynamic action; rather, both emerge from
the purely quantum mechanical consideration of wavefunction parity.

Most classical systems are dominated by Fermi statistics and Pauli exclusion,
rather than by Bose-Einstein statistics or condensation. Given their antipodal
thermodynamic tendencies, perhaps it is not surprising that these two second
law challenges arise only in systems involving transitions between classical and
quantum statistics.

4.6 Quantum Coherence and Entanglement

4.6.1 Introduction

Allahverdyan, Nieuwenhuizen, et al. have written extensively on the limits to var-
ious formulations of the second law in the quantum regime, particularly quantum
coherence and entanglement. They have been among the most fastidious in rec-
ognizing that different formulations can mean different things and that one must
be cognizant of the caveats and limitations of each. They have championed the
Thomson formulation — No work can be extracted from a closed equilibrium system
during a cyclic variation of a parameter by an external source — because its basic
currency (work) is a well-defined physical quantity, whereas heat and entropy (the
more common currencies) are less well-defined and can be context dependent?.
(These researchers have also shown recently that the quantum mechanical effect
of level crossing limits the minimum work principle and that adiabatic procesess
do not correspond to optimal work if level crossing occurs [43].)

At this time, the hypotheses that quantum coherence or quantum entangle-
ment can lead to violations of various formulations of the second law remain ex-
perimentally untested and largely uncorroborated; however, several concepts for
experiments have been advanced. We will summarize the two most detailed of
these by Pombo, et al. [44] and Allahverdyan and Nieuwenhuizen [45].

41t is stressed that Allahverdyan, et al. have never claimed violation of the Thomson formu-
lation, but rather, have proved its inviolability for systems starting in equilibrium (§3.4).
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4.6.2 Spin-Boson Model

Pombo, et al. [44] propose several general schemes by which two-level systems
(modeled as spins) that are quantum mechanically entangled with a bath of har-
monic oscillators can extract work from a heat bath. Two-level systems are ubig-
uitous in nature and technology and are among the most studied quantum systems
known. These include nuclear magnetic resonance (NMR), electron spin resonance
(ESR) and spintronic systems, two-level Josephson junctions, electrons in quantum
dots, and two-level atoms [46, 47].

Pombo, et al. analyse a spin-boson model, which approximates the behavior of
several systems listed above, and which also is exactly solvable analytically [46, 47].
The Hamiltonian for a system consisting of a spin 1/2 particle interacting with a
bath of harmonic oscillators can be written

‘H=Hs+Hp+ Hj, (4.19)

where

. A At 1 . FA
Hs =50+ ——0s; Hp= Z hwralar; Hp = 3 ng(aL +ay)o..  (4.20)
k k

Here Hp,s,; are the Hamiltonians for the bath, the spin-1/2 particle, and their
interaction. & are the Pauli spin matrices; dL and aj, are creation and annihilation
operators; gr are the coupling constants between the bath modes and the spin;
and € = gupB is the standard energy of a spin in a magnetic field, where pp is the
Bohr magneton, g is the gyromagnetic constant and B is the magnetic field. A(t)
is an interaction potential that is switched on and off quickly from an external
source and affects the x-component of spin.

Various modes and protocols of interaction between spin and bath are discussed
[44]. We consider an archetypical one in which the spin is subjected to a sudden,
brief external pulse, by which the spin is quickly driven about the x-axis. (Here
A # 0 lasts for duration d; and has large magnitude; i.e., A ~ i) In principle,
this can be accomplished without changing the energy of the spin € since energy
depends on &, and not 6,. The time-evolution operator associated with the pulse

is: Uy = exp [—z%] = exp [—iHFfl], which, in this approximation (A ~ %), can
be written U; ~ erp [%@&A + O(61), where © = —6lhA, the x-rotation angle.

Note, pulses correspond to a cyclic process of an external work source and they
change neither the energy of the spin, nor its statistical (von Neumann) entropy.

Although the energy of the spin need not change during on-off switching of
A(t), the total system work involves both the spin and bath and it is found that
work can be extracted from the heat bath with proper pulsing of A(t). Under the
conditions that ¢ is small, © = — ‘5# = —%5;and t > % = the relaxation time of
the bath; and € = 0 (to insure the spin energy does not change), the added work
is given by

Al kT
_ghT _ gkT

Wi =20 4 T (5 (0))eap [—i], (4.21)

T2
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where kT is bath thermal energy and 75 is the transversal (6,) spin decay time.
If the spin starts in a coherent state ((6,) = —1) and if the time is adjusted such
that %emp[—%} > AL then (4.21) indicates work can be extracted from the bath
(W7 < 0). This demonstrates that the Thomson formulation cannot be applied
to the locally equilibrium heat bath. However, it is applicable if the whole system
— 4.e. the spin and bath together — starts in equilibrium before applying the
first pulse. (Other schemes challenge the Clausius inequality, whereby work can
be extracted from the bath without changing the entropy of the spin [44].)
Pombo, et al. offer several incentives for pursuing laboratory experiments:
1) Two-level quantum systems and harmonic oscillator heat baths are ubiquitous,
within appropriate physical limits [46, 47], e.g., atoms in optical traps, electron
spins in semiconductors (injected or photonically excited), excitons in quantum
dots, nuclear spins (NMR), or electron spins (ESR) in condensed matter.
2) Experimental detection methods are, in principle, sufficiently well-developed
(e.g., ESR, NMR) to make the salient measurements.
3) The main quantum effects survive for completely disordered ensembles of spins.

4.6.3 Mesoscopic LC Circuit Model

Electrical circuits have long been fertile testbeds for thermodynamics and statisti-
cal mechanics [48, 49]. Recently, Allahverdyan and Nieuwenhuizen have suggested
experiments on mesoscopic or nanoscopic, linear LRC circuits interacting with a
low-temperature heat bath, which in principle could test for predicted violations
of the Clausius form of the second law in the quantum regime [45].

A classical series LRC circuit can be described in terms of conjugate variables
(charge (Q) and magnetic flux (®)). These play roles analogous to canonical
coordinate and momentum in a mass-spring system. Written side by side the LRC
circuit and mass-spring Hamiltonians are written (for zero-damping):

(1)2 Q2 p2 kx2
= —+ -2 H=_42 4.22
) 2L + 2C 2m + 2 ( )
From inspection, p = ®, m = L, k = %; and x = @. Note that the conjugate
variables are also related analogously: Q = % and # = Z. For the R = 0 case,

this classical system can be treated quantum mechanically by allowing @) and ®
to act as operators satisfying the commutation relation: [@, ®] = ih.

In either the classical or quantum regimes, a measure of a circuit’s disorder
(entropy) can be taken to be the volume of phase space (X) that it explores. In
terms of the LRC circuit variables, this can be written

_APAQ _ [(92)(Q?)

b)) - 2

(4.23)

where (®2) and (Q?) are the dispersions (variances) in ® and Q. In the classical
thermodynamic limit, the dispersions take the Gibbsian forms:
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(@) g = %Lhwo tanh(%ﬁhwo) (4.24)
Q% = %Cﬁwo tanh(%ﬁhwo)

where w, = \/% is the undamped LC resonance frequency, and 8 = ﬁ is the
inverse thermal energy.

Starting from the quantum Langevin equations and assuming quantum Gauss-
sian noise with the Nyquist spectrum having a large cut-off frequency (wpmee =T')

[50], the quantum dispersions in ® and ) can be written

(@?) =/dw k(W) (4.25)

2 (14 ) [(@? — w2 + (7]

oy [ dw k(w)
@>‘/%mw—ﬁﬂw+WMﬂ

with k(w) = hRw coth(1).

Comparing (4.24) with (4.25), it is clear that the quantum and classical dis-
persions are distinct. Notably, the quantum dispersions include damping (R),
whereas the classical dispersions do not. In the limit of weak coupling with the
heat bath (R — 0) or at high temperatures (22 — 0), the quantum cases revert
to the classical Gibbsian cases.

The Clausius formulation of the second law can be phrased in the form of
the Clausius inequality: d@Q < T'dS. The heat and entropy changes can also be
expressed in terms of changes in phase space volume d¥, which in turn can be
written in terms of physically measurable variances @@ and ® through (4.23-25).
Classically, if the LRC circuit absorbs heat from the heat bath, then its phase space
volume will expand; conversely, if heat is lost to the heat bath, its phase space
volume will contract. If the dispersions (Q?) and (®2) are Gibbsian, then classical
thermodynamics applies and the Clausius criterion dS > % is satisfied. However,
if the temperature is sufficiently low, then the dispersions follow the quantum
prescriptions, (4.25), and as Allahverdyan and Nieuwenhuizen have shown, in this
regime the Clausius form of the second law can be violated [51, 52]. In this case,
the circuit can absorb heat from the bath while simultaneously contracting in
phase space. More precisely, at finite temperatures a cloud of electromagnetic
modes forms around the LRC circuit. Its energy should be counted to the bath
and may be partly harvested since changing a parameter of the LRC circuit can
induce a change in this cloud.

For the LRC circuit, in principle, this second law violation would be realized
by varying a system parameter (say, inductance L) via an external agent and,
thereby, affecting the heat transferred from the heat bath to the circuit. In the
quantum regime, they find that for low quality factor circuits,

hR
2w L2

aQ = dL > 0 (4.26)
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and that % < 0; that is, there is positive heat transfer to the circuit and phase
space contraction. These constitute violations of the Clausius form of the second
law.

Unlike the classical Clausius constraint (dQ < T'dS), which requires non-zero
temperature for heat transfer, this quantum constraint for heat transfer from bath
to system is temperature independent; therefore, in principle, it can occur at zero
temperature. This observation spotlights the defining characteristic of this quan-
tum thermodynamic system: the role of entanglement. At first consideration, a
heat bath at T' = 0 should not be able to render up heat since presumably it is
in its ground state, possessing only zero-point energy. Equation (4.26) indicates,
however, that heat can in fact be rendered from the bath at zero temperature.
Appealing to the first law, one concludes that the bath is not in its ground state.
In fact, because it is always entangled with the circuit — and, therefore, in a mixed
state — it is never in its true ground state. This extra entanglement energy has no
classical analog and lies at the heart of this quantum second law challenge. This
entanglement leads to a screening cloud, known elsewhere as a Kondo cloud or po-
laronic cloud. Not surprisingly, these also arise in some of Céapek’s systems (83.6).
Nieuwenhuizen and Allahverdyan speculate that such clouds may well be the sole
cause underlying the differences between classical and quantum thermodynamics.

Experimental support for this challenge would consist in measuring heat flow
from the heat bath into the LRC circuit while simultaneously measuring decreases
in the dispersions (®?) and (Q?). Experiments on low-temperature mesoscopic
tunnel junctions have reported inferred values of (Q?) in related sub-Kelvin tem-
perature regimes [53, 54], thus offering hope that full-fledge tests of the Clausius
inequality might be possible. Such experiments would be difficult to design, con-
duct, and interpret, but they appear within the current experimental art.

4.6.4 Experimental Outlook

The above-mentioned experimental concepts and incentives are compelling and
should be pursued more fully since they offer the hope of sensitive tests of at least
two formulations of the second law (Thomson and Clausius) on many systems
for which there is already deep understanding. On the other hand, the level of
theoretical analysis and experimental details presented for the experiments thus
far [44, 45] are insufficient to determine whether such experiments are truly feasible
or even whether their proposed thermodynamic cycles can achieve breakeven in
entropy reduction. Let us consider theory first.

The analysis of Pombo’s thermodynamic cycle appears incomplete, leaving out
key thermodynamic steps. For instance, the work and entropy generation required
to prepare the (5,(0)) = —1 state has not been assessed, although 75 is admittedly
finite, such that spins must be restored on a regular basis for the cycle to repeat.
(If, on the other hand, random spins are used, then the conditions for (4.21)
to return strictly negative work (W; < 0) appear compromised since W; < 0
requires the simultaneous tuning of phase-dependent parameters. Or, if random
spins are used judiciously, these spin states must be measured, presumably by
an energy-consuming, entropy-generating agent.) Additionally, no assessment has
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been made of the work or entropy generation associated with the nonequilibrium
A pulse that couples the spin and bath. Similarly, for the quantum LRC circuit
no thermodynamic assessment has been made of the dL-varying agent®. In short,
several key elements of this cycle have not been assessed thermodynamically. On
the other hand, if the experiments aim merely to test for the fundamental effects
— full second law challenges aside — then these objections may be moot.

There are also many experimental issues that have not been addressed — too
many to list here — so let this summarize: No realistic experimental system for
either proposal (spin-boson or LRC) has explicitly been shown to meet the criteria
for work extraction from a heat bath, nor have explicit experimental designs with
realistic experimental parameters been vetted adequately. For neither model has
it been well-established that experimental techniques are adequate to make the
necessary measurements, nor that the negentropy of the cycle can outweigh the
the entropy production of the apparatus, even in principle. In contrast, Nikulov,
et al. (§4.4), Keefe (§4.3), and Sheehan (Chapters 7-9) have treated well-defined
experimental circumstances, realizing that with experiments, the devil is in the
details. In summary, within the idealizations of their theoretical development,
compelling cases have been made for second law challenges in the quantum regime;
however, these experiments are still in the conceptual stage.

The thermodynamic requirements for these and the previous challenges (§4.3,
84.4) are extreme. The superconducting ones require both low-temperatures and
micro- or mesoscopic structures, which burden experimental techniques and ham-
per direct, unambiguous measurements of predicted entropy reductions or heat
fluxes — whichever is necessary. It is not enough for the CMCE engine to simply
run, or for voltage oscillations to be measured in an inhomogeneous superconduct-
ing loop near its transition temperature. To challenge the second law successfully,
the involvement of all other possible free energy sources must be ruled out and,
ideally, direct measurements must be made of sustained heat fluxes or entropy re-
ductions that are causally connected to the forbidden work. These types of energy
and entropy determinations are not trivial even for room-temperature, everyday
macroscopic devices like flashlights; thus, for a vacuum-packed, microscopic super-
conductor near absolute zero, it is likely to be more difficult. With regard to the
entanglement proposals, here the difficulties associated with microscopic devices
are traded for the intricacies and uncertainties associated with entanglement. As
a simple example, how does one quantitatively measure system-bath entanglement
and demonstrate unambiguously that it has been transformed into work?

Despite these hurdles, these low-temperature challenges are among the most
compelling of the modern era. At a deep level they underscore the fundamental
differences between classical and quantum thermostatistical behaviors. Of course,
quantum statistics were unknown at the time thermodynamics and statistical me-
chanics were being forged, and since then quantum systems have grown up to be
disrespectful of the zeroth and third laws. Perhaps it should not be too surprising
that they now show occasional disrespect for the second.

5In principle, a work source generates negligible entropy, but for real experimental systems
this is rarely the case.
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5

Modern Classical Challenges

An assortment of modern classically-based second law challenges are reviewed and
critiqued. Most are theoretical, but one has undergone exploratory laboratory
tests (§5.5).

5.1 Introduction

Since 1980 over two dozen challenges have been raised against the second law,
documented in roughly 50 journal articles. In this chapter we review a half-dozen
representative challenges, beginning with the earliest of the modern era by Gor-
don (§5.2) and Denur (§5.3), up through some of the most recent by Crosignani,
et al. (§5.4) and Trupp (§5.5). Aside from their classical natures, this eclectic
group appears to have few common threads: Gordon theorizes about the Maxwell
demon-like possibilities of chemical membranes; Denur extends the ideas of Feyn-
man’s pawl and ratchet toward a truly thermally-driven device; Crosignani, et
al. trod the well-worn path gas fluctuations and discover a thermodynamic gem
in the mesoscopic regime; Trupp finds surprises involving classical dielectrics; and
Liboff considers the mechanical scattering of disks in special geometries. We begin
with Gordon, who lobotomized Maxwell’s demon once and for all and, thereby,
surmounted a 50-year preoccupation with information theory.
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5.2 Gordon Membrane Models

5.2.1 Introduction

The challenges of L.G.M. Gordon, beginning in 1981 [1], commence the modern
movement to investigate the absolute status of the second law [2, 3, 4, 5]. This
series of challenges is based on asymmetries in chemical reactions associated with
membranes. Using plausible chemical structures and reaction mechanisms, Gordon
posits a breakdown in the principle of detailed balance.

Gordon’s seminal contribution was to reduce the Maxwell demon [6] to mere
chemicals, specifically to replace the demon’s sentience and intelligence with linked
chemical reactions that serve as algorithms, and to substitute trapdoors, pawls,
and pistons with functional membranes and structured molecules. In doing so,
Gordon sidestepped issues of information and measurement theory that had side-
tracked second law discussions for half a century — although these digressions
were fruitful in other areas [6]. Gordon’s general tack of undermining detailed
balance was later arrived at independently by other workers, notably Cépek [7]
and Sheehan [8], each of whom developed this approach in different directions.

All of Gordon’s challenges involve chemical membranes, which can be as simple
as monolayers of a pure liquid or as fantastically complex as biomembranes, whose
structures and functions still hold fascination after more than 70 years of study
[9]. Their properties vary considerably; the following values are representative.
Biomembranes have typical thicknesses on the order of 10~®m. Embedded pore
proteins have typical masses of 10%amu, constructed from on the order of 10°
atoms and having sizes on the order of 5 — 10 x 10~?m. Conformational opening
and closing times for channels are of the order of 1072 — 10~ %s.

Biomembranes can be likened to molecular machines; they recognize molecules,
selectively bind and transport them, modify their own structure in response to their
environment. In essence, they can execute all the necessary functions of a Maxwell
demon. What is unclear — and the fundamental question that Gordon raises —
is whether biomembranes can accomplish these tasks solely using ambient heat,
rather than standard free energy sources like ATP.

Ton sorting and transport is one of the primary functions of biomembranes.
In doing so, they are able to establish potential gradients between the inside and
outside of cells (typically AV = 60—80mV) and thereby store significant capacitive
electrostatic energy that can be tapped instantaneously to drive other membrane
and cell processes. The common cellular Na™ /K™ gradient will relax away through
diffusion unless it is is maintained through active ion transport. This requires
energy which is typically supplied by light or ATP.

The proteins that carry out membrane functions are typically embedded in the
membrane itself. They act as barriers to the exterior environment (nasty chemicals,
viruses, etc.), as binding sites, gates, channels and conveyer belts for the influx and
efflux of nutrients and wastes. Molecular sorting and transport is accomplished
through binding specificities and conformational changes in their structures. While
this usually requires energetic free energy sources (ATP or light), some appears to
require less. The glucose transporter protein in the cell membrane, for instance,
is inactive toward the Na™ ion alone and toward the glucose molecule alone, but
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when confronted with a Nat-glucose complex, it binds it, spontaneously changes
conformation, thereby allowing passage of the NaT-glucose complex into the cell.
While this seems to require nothing more than thermal energy to proceed, the
net flux is driven by concentration gradients of NaT-glucose, thus by chemical
potential gradients, and therefore does not constitute a second law paradox.

This raises a conundrum. If the opening and closing of the glucose transporter
channel is driven by thermal energy and is merely unlocked by the presence of the
NaT-glucose complex (requiring no free energy expenditure), then mechanistically,
there appears to be no reason why the necessary conformational changes cannot
be triggered from one side of the membrane only; that is, the receptor site to
trigger passage could be found on one side only. If this were the case, however,
then glucose would pass in one direction, constituting a solute pump, in violation
of the second law. Experimentally, however, this is not observed, either for the
glucose transporter or any other protein. Experiments find that the maximum
glucose transfer rates are the same in both directions across the membrane in the
absence of concentration gradients. No examples are known of net particle flux
without gradients or free energy driving them, which of course, conforms to the
second law, but which is not to say that they cannot exist, in principle.

Gordon’s challenges fall into two broad catagories: those that rely primarily
on chemical kinetics [1, 3] and those that rely strongly on physical or mechanical
properties [2, 4]. Of these, the former type seems robust, while the latter is suspect.
We will consider examples of each. Although they invoke characteristics of real
chemical entities, Gordon’s challenges should properly be considered theoretical.
Similarly to Cépek’s, they are formal and not known to apply to any specific
membrane or chemical system, and no experiments are recommended.

Most of Gordon’s work [2, 3, 4, 5] stem from ideas in his first, seminal paper in
1981 [1]. It is motivated by the famous Szilard [10] and Szilard-Popper [11] engines
which are also abstract and purely mechanical. For the following discussion, we
mostly adopt Gordon’s notation.

5.2.2 Membrane Engine

Consider an isothermal, isobaric gas B, partitioned by a membrane having a gated
channel, as depicted in Figure 5.1. The gate (vertical dotted line) can exist in two
states (left blocked/right open (X1); and left open/right blocked (X2)) and the
channel can exist in two states of constriction (wide (Y1) and narrow (Y2)). Gas
B can pass through only an open gate or a wide channel. The channel widens and
narrows through conformational changes propagating in the direction indicated by
the arrows near the channel walls.

Together there are four possible states of the gated channel, as indicated in
Figure 5.1. The gas concentration associated with each state X;Y; is given by Cj;.
The rate constant (transition probability) coupling state X;Y, to state X;Y, is
given by k;;, with (7,5 = 1,2). The rate constant (transition probability) coupling
state X,Y,, to state X, Y,, is given by A, with (m,n =1,2).

The channel is encased by a cylindrically N-lobed clathrate holding a single
molecule M. M links the chemical dynamics of states X and Y, which are other-
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dgtn = —(k12 + h12)C11 + k21C21 + h21C12+0=0 (5.4)
dg;l = k12C11 — (ka1 + h{2)021 +0+ h;ngz =0 (5.5)
dj;u = h12C11 + 0 — (ho1 + k12)Cr2 + k21C22 =0 (5.6)

C=C11+Cn+Ci2+C2=0 (5.7)

Here C indicates the total concentration is constant. These four linearly indepen-
dent equations can be solved simultaneously for Cj;.

Starting from equal gas pressures on either side of the membrane, assuming an
average number of molecules (W) adsorb at each channel, and employing (3), the
gas transfer rate (R) across the membrane is found to be:

C
R = W(k12011 — k21021) = Wzklgkglhlghgl(]\/v — 1), (58)

where A is the determinant of the coupled linear equations’ matrix.

Since R # 0, there is a net, spontaneous flux of B across the membrane. The
net flux ceases when the pressure ratio across the membrane is N : 1. The flux
is driven entirely by thermal energy. For n moles of ideal gas B, the net entropy
decrease is AS = —nR1In(N) < 0.

As a precursor to his membrane engine, Gordon [1] described a purely mechani-
cal engine based on the works of Szilard [10] and Popper [11]. Comparing Gordon’s
membrane engine with his mechanical one, membrane states X and Y correspond
to the trapdoor and piston, respectively. Molecule M breaks the symmetry in the
chemical dynamics, thereby allowing the system to evolve irreversibly.

One can estimate the performance of Gordon’s engine. If the membrane chan-
nel and clathrate cover surface area L? and can execute a molecular transaction
in average time 7 at temperature 7', then the areal heat flux Q should scale as
Q ~ —ﬁRT In[N], where N, is Avogadro’s number. For pore of scale size
L ~ 107%m, N = 6, and transaction time 7 ~ 1073s at T = 300K, one has
Q ~ —0.1W/m?. Since chemical membranes are thin, the volume heat flux could
be substantial; for stacked arrays of membranes 10~ "m thick, the volume heat flux
Q the immediate example would be Q ~ —105W/m?. Clearly, without compen-
sation, this would cool the system very quickly such that this pumping rate could
not be sustained. A more streamlined version of the membrane engine was given
by Gordon in 1994 [3].

On the surface, Gordon’s engine appears superior to its mechanical counter-
part in that it relies upon known and plausible biochemical properties, behaviors
and structures, rather an on an idealized micro- or nano-sized machine. It re-
treats from Szilard’s classical mechanical modeling, which is suspect at the size
scale at which the engine must operate, and instead employs statistical assump-
tions (transition probabilities) which are more appealing. On the other hand, in
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Figure 5.2: Membrane with molecular trapdoor in open and closed states.

light of recent advances in micro- and nanotechnology, especially micro- and nano-
electromechanical systems (MEMS and NEMS) [12], one must question whether
Gordon’s mechanical engine will ultimately be any less feasibly constructed than
his biological one. ‘Bottom-up’ construction and self-assembly of nanomachines is
currently more a dream than a reality, but the rapid progress in the field coupled
with sure knowledge of life’s success with this approach suggests that, in the end,
there may be little difference between the two, aside from descriptive formalism.

5.2.3 Molecular Trapdoor Model

Consider an isolated isothermal system (Figure 5.2) consisting of two chambers
of gas G separated by a thin, thermally-conducting membrane containing pores
permeable to the gas [2]. The pores are molecularly hinged with a trapdoor (T D)
such that it can be in an open (T'D,) or closed state (T'D.). States TD, and T D,
can be long-lived, for instance if the tip of the door physisorbs on the closing peg
or on the pore wall.

This system is claimed to operate asymmetrically in that molecules G moving
from compartment B (left) can pass into chamber A only when in the membrane is
in the T'D,, state since the molecule is unable to force the trapdoor open, against
its stopping peg. Molecules convecting from chamber A; however, can pass both
when the trapdoor is open (T'D,) and also a fraction of the time when it is closed
(X) by forcing the door open with a suitably energetic collision from the right.
This is the molecular equivalent of a doggy-door.

The total average flux of G from chamber A to B (Jap) and from B to A (Jpa)
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through the pore can be written

To + X7,
Jap = kap|Gal———

and

Jpa = kAB[GB]%, (5.10)

where 7 = 7, + 7. is the total time of an opening-closing cycle!; [Ga p] are the
volume concentrations of G in chambers A and B, and k4p and kg4 are the rate
constants for G entering the channnel from the A and B chambers, respectively.
(It is required that kap = kpa, otherwise at equilibrium, with the trapdoor per-
manently open, one has Jap # Jpa, which violates the principle of microscopic
reversibility.)

At equilibrium, it is required that Jap = Jpa. Setting these equal, one obtains
the condition:

%2’3} - T‘”LTXTC =1 +X% > 1. (5.11)
A o o

In other words, a pressure difference can spontaneously evolve between the two
chambers and, presumably, pressure work can be performed by throttling the gas
so as to relieve this difference. In essence, this is an asymmetric molecular valve,
a non-sentient Maxwell pressure demon, a chemical version of the Maxwell valve
[13].

No explicit chemical design for this device has been proposed for the gas phase,
but liquid phase versions have been suggested by K. Varner in the context of “at-
tached osmotic membranes [14, 15].” To date none have been attempted experi-
mentally.

The crucial claim of this paradox is that a gas molecule G can force the trap-
door open from the right, but not from the left. This is questionable. The gas,
membrane and trapdoor are at thermal equilibrium. Therefore, the thermal buf-
feting by the gas molecules is simply another manifestation of the thermal fluctu-
ations that the door undergoes already as a result of being coupled radiatively to
the blackbody cavity and conductively to the molecular hinge and peg (intermit-
tantly). In other words, the time the trapdoor spends in state T'D,, or T'D,. should
be unaffected by the presence of the gas. As a result, the X:—S term in (5.11)

should not be included; thus, (5.11) reduces to ﬁ—f = 1, erasing the paradox?.
In related work, numerical simulations of the Maxwell demon with a thermally-

flapping trapdoor have been conducted by Skordos and Zurek [16]; they find no
second law violation.

L1Gordon included additional time scales Toe and 7co for the times associated with opening-
closing and closing-opening. These add detail, but do not add to the essence of the argument,
especially since they are expectedly brief, Tco,op ~ 107 12s.

2Recently (2003), Gordon has suggested that stereochemical modifications to the trapdoor
might overcome this objection by introducing chiral asymmetry into its chemical dynamics.
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Figure 5.3: Molecular rotor globular protein and membrane in two states (A and
B).

Varner’s attached osmotic membrane proposal [14] bears strong resemblance to
Gordon’s trapdoor. It has been suggested on purely thermodynamic grounds that
this also does not constitute a second law challenge [17]. The case against Gordon’s
trapdoor bears resemblance to that raised against Denur’s Doppler-demon [18] by
Motz [19] and Chardin [20].

5.2.4 Molecular Rotor Model

Combining chemical features of Gordon’s first paper [1] with physical forces rem-
iniscent of his second [2], this challenge involves a molecular rotor that pumps
either heat or particles across a membrane preferentially in one direction.

Consider a globular protein attached to an adiabatic membrane separating two
fluids A and B initially at identical temperatures (Figure 5.3). The protein can
exist in two states (A and B) having different moments of inertia (I4 and I5) with
respect to its rotational axis normal to the membrane surface. The protein rotates
at angular velocity w with thermo-statistical probability distribution p(w). Via
conformational changes, the protein can pass through the membrane adiabatically,
preserving both energy and angular momentum during passage. It is claimed that,
in principle, net angular momentum (and, therefore, heat) can be conveyed across
the membrane by A and B during periods during which their angular momenta
are different.

Complex side chain moieties (X and Y) are postulated to reside within the
protein’s interior volume. Due to a combination of precise steric hinderances and
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due to differing centrifugal forces experienced by X and Y, it is argued that the
A-B transition rates are asymmetrized and detailed balance is destroyed at all w.
Specifically, the forward (A—B) transition rate decreases and the reverse (B—A)
transition rate increases with increasing w. Since the energy transfer rate across
the channel depends on w, net rotational energy (which degrades into heat) is
spontaneously transferred from fluid B to fluid A until a sufficient temperature
gradient arises to balance the net heat flow. Modifications to this heat pump
renders it a particle pump. As described, both violate the second law.

The claimed operation of this molecular rotor is questionable. Issues surround-
ing angular momentum has not been considered adequately. Presumably, the pro-
tein is subject to the principle of equipartition of energy. The salient rotational
degree of freedom has an average of %kT of thermal energy partitioned to it. For
molecules of the size and molecular weight of a globular protein (m ~ 10%amu,
N ~ 10%atoms), %kT of energy does not buy much angular velocity. For a spher-

ical protein, one expects w ~ ,/kTT ~ 10%rad/s. This is four orders of magnitude

smaller than typical rotation frequencies for small molecules. (In fact, the protein
is so large that that it behaves much like a classical object in that its thermally-
driven angular velocity is small (w — 0).) Centripetal forces experienced by
moieties X and Y will likewise be small.

Centrifugal distortion of small molecules is well known to affect their vibrational-
rotational spectra [21] and can, in theory, affect reaction rates and pathways, espe-
cially at high temperature where molecular fragmentation begins, but it is rarely
considered significant for low temperature reactions. For the rotor protein under
discussion, centrifugally-modified chemical reactions is not a compelling scenario,
for several reasons. First, proteins are stable and functional primarily in a nar-
row, relatively low temperature range (7' ~ 300K), where angular velocities and
centripetal forces are fairly low, probably too low to distort moieties enough to sig-
nificantly alter or trigger the proposed steric reactions. Second, at a microscopic
level, if the steric reactions can be triggered by these small centrifugal forces,
it is unclear how well they could be also stabilized against unwanted triggering
by random thermal fluctuations. Third, as described by Gordon, X,Y moieties
responsible for modifying the protein’s moment of inertia appear to account for
only a small fraction of the protein’s entire mass, perhaps less than 1073, which
would be roughly 1000 atoms. If so, one can expect only a commensurately small
change in the moment of inertia and angular velocity. It is questionable whether
a 1073 change in angular velocity, which is already 10* times smaller than angu-
lar velocities associated with molecules that do not typically exhibit centrifugal
effects anyway, should have sizable effects on chemical processes. On the other
hand, even small asymmetries in competing reaction rates can, in the long term,
post a gain. In this sense, Gordon’s chemical rotor might be considered a chemical
ratchet, somewhat akin to the more familiar thermal ratchets [22] that rectify ther-
mal fluctuations; however, rather than relying on chemical energy or temperature
differences, these chemical ratchets rely on violations of detailed balance.

In all, the mechanical forces associated with rotation are probably too small
relative to chemical forces (e.g., those arising from chemical and hydrogen bonds,
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or van der Waals potentials) to significantly alter chemical behavior of the protein.
More detailed calculations, perhaps even fully quantum mechanical ones, should
be undertaken to settle this issue.

It is claimed that the membrane is adiabatic with respect to energy and angular
momentum transfers from the protein. Inasmuch as rotational and vibrational
transition times are relatively short (7 ~ 10712 — 107!3s) compared with protein
conformational transition times (7 ~ 1073—10"%s), it is unclear how the membrane
could remain energetically decoupled so long from the protein during its passage.
This problem also applies to the protein’s relatively long residence time in fluids A
and B. In summary, while the molecular rotor is suggestive of second law challenge
in the formal sense, its physical aspects are not compelling.

5.2.5 Discussion

The method underlying Gordon’s robust challenges [1, 3] — undermining detailed
balance through thoughtful asymmetrization of reaction mechanisms and kinetics
— is compelling and finds resonance in the work of later researchers [7, 8]. It
remains to be seen whether it can be realized experimentally.

That the membrane engine has not been observed in Nature can be taken as
evidence that: a) it is not physically possible (i.e., the second law is absolute or
other inherent constraints in chemistry forbid it); b) it is possible, but has not been
exploited by life; or c) it is possible, but has not been discovered yet. Without a
general formal proof of the second law or complete knowledge of chemistry, option
(a) is indeterminate.

The logic of natural selection — “that which survives to reproduce survives” —
would seem to demand the existence of thermally-driven biochemistry if natural
laws and conditions permit it, and if survival requires it. Under normal terrestrial
conditions, where free energy sources are abundant, thermosynthetic life would
probably be out-competed by standard free energy life, but in energy-poor envi-
ronments, for instance, deep in desert regions the Earth’s crust where free energy
sources are scarce, thermosynthetic life might have opportunities. Since most mi-
crobes and their biochemical processes have not been well characterized — in fact,
most microbes cannot even be cultured decently — option (c) remains a possibil-
ity. This issue will be considered more deeply in §10.2.

5.3 Denur Challenges

5.3.1 Introduction

Jack Denur is one of the pioneers of the modern second law movement. Over the
last 25 years he has advanced two second law challenges relying on the properties of
blackbody radiation, in particular, the Doppler shifting of the radiation field. The
first [18] is a Maxwell demon that utilizes Doppler-shifted radiation from moving
atoms as a means of velocity-sorting them and the second [23, 24] is an advanced,
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linear version of Feynman’s famous pawl and ratchet [25]. While the first [18]
appears to have yielded to the second law [19, 20], the second [23, 24] remains a
viable challenge even though its second law violating effect is extremely weak and
prospects for its experimental realization are dim.

5.3.2 Doppler Demon

Consider a garden-variety Maxwell demon who operates a microscopic gate be-
tween two chambers filled with gas at equilibrium [13, 6]. By intelligently observ-
ing the atoms and operating the gate, he can establish either: i) a temperature
gradient by letting fast molecules pass into one chamber and slow molecules into
the other; or ii) a pressure gradient by letting more molecules pass into one cham-
ber rather than the other. In principle, either gradient can be exploited to perform
work solely at the expense of heat from a heat bath, in violation of the second law.

A primary difficulty for the Doppler demon is discriminating between fast and
slow particles. Brillouin [26] argued that since the entire system is at thermal
equilibrium (including the demon himself) and is bathed in the blackbody radia-
tion, everything in the cavity looks the same; therefore, the demon is unable to see
incoming molecules. He is blind. In order to see individual molecules, the demon
needs a nonequilibrium light source, which generates sufficient entropy to satisfy
the second law, regardless of how much work he can extract from the gas.

Denur argues that Brillouin’s argument is incomplete. By assumption, the
chamber’s atoms are in constant thermal motion as they emit and absorb radiation.
From his stationary position at the gate, the demon observes Doppler blue-shifted
radiation from atoms moving toward him. Thus, by monitoring the subtle blue-
shifting of the blackbody radiation, he can anticipate the arrival of high-speed
atoms and gate them accordingly. False positives should not foil him since they
should occur with equal average frequency from each chamber so their effects
cancel out.

The magnitude of the Doppler shifting is roughly

(va) (V). (5.12)

c Vi

where v, is the velocity of the atom in the direction of the demon, c is the speed
of light, v, is the frequency maximum in the Planckian radiation spectrum, and
Ovy, is the Doppler frequency shift. Under realistic conditions, the Doppler shift
is predicted to be small ( <5V"—m> ~ 107%), but within limits of experimental mea-
surement. "

Denur’s Doppler demon drew critical response. H. Motz [19] pointed out that
an increase in intensity of radiation in any particular frequency interval v — v+dv
could be from radiation upshifted or downshifted through scattering by atoms mov-
ing toward or away from the demon either in the gas phase or in the cavity walls.
Thus, the demon cannot correlate frequency fluctuations with desirable incoming
particles. The demon is still blind, as Brillouin predicted [26]. G. Chardin [10]
showed that the recoil an atom undergoes when it emits toward the gate reduces
the atom’s velocity, rendering it useless to the demon’s scheme. Chardin’s and
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Figure 5.4: Schematic of Denur’s linear ratchet and pawl engine.

Motz’s arguments reduce to the observation that the gas atoms are an equal com-
ponent of the blackbody environment just as are the chamber walls. Just as one
would not expect the radiation field to betray the existence of individual atoms in
the walls, one would not expect it to betray individual atoms in the gas phase.

5.3.3 Ratchet and Pawl Engine

Denur’s more recent challenge again relies on the Doppler shifting of the blackbody
radiation field, but is immune to previous criticism [19, 20]. Consider the linear
ratchet and pawl (RP) system pictured in Figure 5.4, consisting of a disk (mass
m'), a rod on which the disk slides frictionlessly, a pawl (mass m), and a linear
ratchet with pegs of height H and separation L, satisfying L > H. Let m' +
m = M > m, so the pawl is a minor mass contribution to the sliding portion of
the device; the linear ratchet and slide rod are fixed. Gravity acts downwardly
(—z). At temperature T, the disk/pawl executes Brownian motion in the +x
direction and the pawl alone also executes Brownian motion in the +z direction.
The differential probability dP(V|T,) of finding the disk in the velocity interval
between V — %dV and V + %dV at temperature T, is given by the one-dimensional
Maxwellian distribution:

MV?
2kT,

dP(V|T,) = ( )2

exp| Jav. (5.13)

2wkT,
This is symmetric in velocity so, in principle, one expects the disk/pawl to
randomly move equally in the +2 and —x directions. This, however, ignores the
effect of Doppler-shifted blackbody radiation caused by the Brownian motion of
the disk and the pawl’s asymmetric location on the disk, facing in the 4+x direction.
The Brownian motion of the disk is random and decorrelated with the fluctua-
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tions in the blackbody field. When the disk moves with Brownian velocity V' (with

|V| <« ¢), the side facing the direction of travel — for discussion, let this be to the

right (+2 direction) — experiences a slightly blue-shifted radiation field, while the

trailing side of the disk sees a slightly red-shifted field. As a result, to first order

in velocity, the leading side of the disk observes a radiation field of temperature
2|V

T, ~T,(14+ — 5.14
+ 0( + 3¢ )7 ( )

while the trailing side observes radiation temperature?

2|V|
3c

Denur argues, using realistic physical parameters, that the leading and trail-
ing sides of a microscopic disk can assume the temperature of the radiation field
during the characteristic time interval of Brownian fluctuations, while at the same
time, the two sides can be sufficiently thermally decoupled to maintain different
temperatures. If so, then the vertical (+z) Brownian motion of the pawl, which
is on the right side of the disk, will not fluctuate in a symmetric manner with
respect to the disk’s horizontal (+z) velocity. Specifically, when the disk moves
to the right (+z) the pawl will be at a slightly higher temperature than when it
moves to the left (—z); therefore, the pawl will on average execute more extreme
42z Brownian motion when it moves to the right and, as a result, have a higher
probability of clearing pegs on the linear ratchet. The upshot of this is that the
disk/pawl assembly will preferentially drift to the right (4+x). This asymmetric
net drift is derived solely from thermal energy from the surroundings. As such,
since it can be exploited to perform work, it constitutes a violation of the second
law.

The probability of (+z) Brownian motion of the pawl is given similarly to that
for the disk/pawl assembly, equation (5.13). The probability P((z > H)| £ |V])
that its vertical excursions are sufficient to scale the height of the peg (z > H)
when moving with velocity |V, and thus, to allow passage of the disk (in either
direction) depends both on temperature and the disk’s instantaneous velocity as:

T_ ~T,(1 -0, (5.15)

mgH mgH
P H)|x|V|]) = —— | = — . 5.16
(> H)| £ V) = enpl— i fom] = empl- e P gorag) (516)
Under the reasonable condition that %@ < 1 and defining A = %, one
obtains the simple expression
2A|V
P((z>H)|+£|V))=(1+ %)e*f‘. (5.17)

It is clear from (5.17) that the pawl is more likely to Brownian-jump a peg
moving to the right (+|V]) than to the left (—|V]) and, thus, the attached disk is

3It can be shown that the form of the Planck distribution survives Doppler shifting; the
Maxwellian velocity distribution does not.
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more likely to move to the right than to the left, i.e., V¢ > 0. To first order, the

ratio of these probabilities IP;EJ—FWB = R, is given by

Vi

Ry(|V]) = 1424 (5.18)

Since the pawl has a net drift it also approaches more pegs from the left than
from the right, and hence it also makes more jump attempts from the left by the
same ratio, R1(|V|). Thus, the pawl makes more jumps over pegs from the left to
right than vice versa, in the ratio [R1(|V])]?. To first order, this is

v
[Ri(JV])]? :1+4A%. (5.19)
The net drift velocity of the disk for Doppler-shifted temperature at velocity

V] is Vaer (IV]):

_ V2 o
Vaet(IV]) = [VI{(R:([V]))? — 1}e™ 4 ~ 4A—e 4 (5.20)
Averaging this over all V' gives
V2
Viet = 4A< . >e—A, (5.21)
and maximizing V,,.; with respect to A (i.e., % = 0), one obtains A,,, = 1 and
A(V?) KT,
Viet.maz = = —. 5.22
& ec Mec ( )

Denur calculates the maximum power output for this pawl and ratchet to be
(dW) 1 [(QkTo)5]1/2
dt " Lec? wM3 ’

Dimensional analysis (with M o L3, where L is the characteristic length scale
of the system) shows power output for individual devices scales as L=% and the

(5.23)

power density scales as L’%; both scale as Tp /2, Clearly, small devices and
high temperatures optimize performance. The Denur RP, however, cannot be
made arbitrarily small or run at arbitrarily high temperatures. Implicit in his
analysis is that the disk must be large compared with the typical wavelength of
the blackbody radiation — i.e., L > X\ ~ kh—Tco — otherwise, diffraction will reduce
the effective opacity of the disk by allowing scattering around it, thus degrading
the temperature difference (T4 — T-), and consequently, V. and %. Also,
the device cannot operate at arbitrarily high temperature. The most refractory
materials have upper limit temperatures T},,, < 4000K, and even for T' < 3000K,
evaporation is a significant problem. Taking T},,, = 2500K as the maximum
operating temperature, taking L ~ IOkThﬁ ~ 6 x 107°m as the minimum device
scale size and letting it be made of low mass density building materials (p ~
10%kg/m?), one obtains the maximum power per device as 4% ~ 10~47W /device

and maximum power density P .~ 1073*W/m3. The net drift velocity of the
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disk is found to be Vier,maz = 2 % 10’18m/s. These are very small and cast doubt
on the practicality of the RP. To put these numbers in perspective, consider the
following:

1) Given Vet mas it would take roughly

T fmam ~ 108 years for the device to drift
its own scale length, or roughly the age of the universe to drift 1 meter.
2) The optimized power densities (P* ~ 10734W /m?) are so low that if the mass of
the Sun were devoted to these devices, in total, they would generate only 10~"W
of power.

Denur suggests that the power output and velocity of the RP can be improved
by substituting the blackbody radiation field with a suitable Maxwellian gas [23].
This would, of course, entail additional caveats and difficulties. The power could

be increased by roughly a factor of ﬁ and velocity by roughly T?JD’ where
(JU]) is the thermal velocity of the gas (|U|) = (%)1/2. If (JU|) = 1500m/s,
one expects the improvement to V,,.; and P* to be by factors of roughly 10° and
1019, respectively. Despite these significant improvements, V,,.; and P* are still
quite small.

The minuteness of V,,.; and P* do not make the RP an attractive candidate
for an experimentally realizable second law challenge. Compounding these, the
practicalities of constructing a working model are daunting. The current art of
microfabrication may be adequate to construct such a device, but friction and
stiction are likely to be problematic. Stiction commonly seizes up devices similar
to the RP. Even in the current best case scenario, using nested multiwalled carbon
nanotubes, which have the lowest frictional constants yet measured, friction would
probably doom the device. If technical hurdles can be overcome, it is conceivable
that Denur’s effect might be observable with an ensemble of RPs using advanced
interferometric techniques. Long observation times — perhaps multi-year — might
be necessary to discern movement along the ratchet.

As a realizable second law violator, Denur’s ratchet and pawl is an unlikely
candidate, but as a clear demonstration of spontaneous, thermally-driven, velocity-
space symmetry breaking, it succeeds. Its main contribution could be its fertile
and original insights from which more robust challenges might emerge.

5.4 Crosignani-Di Porto Adiabatic Piston

5.4.1 Theory

B. Crosignani, P. Di Porto and C. Conti, have theoretically and numerically in-
vestigated the dynamical evolution of a frictionless, adiabatic piston in a gas-filled
adiabatic cylinder subject to the Langevin force [27-32]. They find that in the
mesoscopic regime the piston can undergo sizable fluctuations in position and dis-
play entropy decreases up to two orders of magnitude greater than those predicted
from thermal fluctuations. Furthermore, the system exhibits the disquieting prop-
erty of failing to settle down to an equilibrium configuration. Although not yet
fully developed as an experimentally testable perpetuum mobile of the second kind,
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Figure 5.5: Schematic of adiabatic piston and cylinder.

the theoretical behavior of this system raises serious doubts about the validity of
the second law in the mesoscopic regime. (Here mesoscopic refers to the regime
bridging classical microscopic and true quantum mechanical length scales.) We
follow the development of Crosignani, et al.

Consider an adiabatic piston of mass M,, free to move one-dimensionally in an
adiabatic cylinder of length L filled with an ideal gas (molecular mass my,). (Here
adiabatic means that the piston’s and walls’ interior degrees of freedom cannot be
excited, but that they can receive and transmit impulses to the gas.) The piston
divides the cylinder into two regions of lengths X and L — X, as indicated in Figure
5.5, and each holds N atoms (n = N/N4 moles) of total mass M,. At time ¢t =0,
let the system be at thermal equilibrium, with X = L/2 and with equal initial
pressures P, temperatures T,, and particle numbers N in both regions. Let the
piston be released from rest at the center of the cylinder (X (0) = £, X(0) = 0).
With no outside forces, the piston is driven by the rapidly fluctuating Langevin
force [41]. Between the two regions T' may vary, but P and N remain fixed.

As derived elsewhere [29], the nonlinear equation for stochastic motion of the
piston can be written

Xm—ﬁﬂ¢§+¢?iX;Y+ﬁﬂ;LEXyW+Am (5.24)

Here C = %, with R the ideal gas constant, and A(t) is the Langevin
p

acceleration. Using a piston in a torus model, it can be shown [30] that A(t)
should have a white noise spectrum, defined through the standard relation

2mgkT \1/2
<A@Aw»:§LiE%LB§&p4W (5.25)
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Sy is the cross sectional area of the piston. Clearly, A(t) is frequency independent.

As shown by van Kampen [35], the Langevin approach fails, in general, for
nonlinear dynamical systems such as this. To proceed, Crosignani, et al. examine
two regimes of operation, corresponding to the conditions p = % < 1 (which can

be solved analytically) and the less stringent condition g < 1 (which they solve
numerically). We summarize each.

(1 < 1): Equation (5.24) is linearized by assuming small displacements of the pis-
ton (% < 1) and also by approximating the square of the piston’s velocity

by its thermal mean square velocity (X = ,/ J\/:IF; ). This renders

. | 2NKT, .  8kT,
X +38 X X =A(t 5.26

which is formally identical to the Brownian motion of a 1-D harmonically-bound
oscillator of mass Mp:

X 46X +w’X = A1) (5.27)

The Brownian harmonic oscillator is well-studied [36].

Once released from its mid-cylinder position, where its thermodynamic en-
tropy is maximum, the piston does not settle down to a final position, but instead
fluctuates about X = £ with a large mean square displacement (z%) = 4(%)2.
This anomalous behavior does not arise from pressure differences between the two
sub-chambers — in fact, their pressures are the same — but rather it is due to tem-
perature variations. The entropy variations associated with these displacements

are at odds with a standard corollary of the second law, namely [27],

A closed system in an equilibrium state, once an internal constraint is
removed, eventually reaches a new equilibrium state characterized by
a larger value of the entropy.

The ensemble average entropy variation about the system’s maximum entropy
state can be shown to be:

(as) G

k2R
where C), is the molar heat capacity of the gas at constant pressure. Whenever
Np > 1, this implies large entropy decreases. Crosignani, et al. find that for re-
alistic physical parameters at mesoscopic scales, in fact one can have @ < -1,

which is in disagreement with classical thermodynamics.

(Np), (5.28)

(u < 1): The primary constraint above (i.e., p < 1) can be relaxed to p < 1
assuming the Langevin approach validly extends into the mildly nonlinear regime.
(This was checked a posteriori and found to be reasonable [32].) One can introduce
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a characteristic timescale for the system (7, = {M,,L( )Y 2}) and dimen-
oMy

sionless spatial and temporal variables £ = % and 7 = £, With these, (5.24) can
P

be recast as the dimensionless equation

.. 1 1 - 1,1 1 :
5—}—[——1—7}5————— 2 = oa(r), (5.29
Ervizelt Tule Tt T :
where 0? = (4—\’;5)711’\‘“ ~ % and () is the white noise spectrum of unitary

power. Derivatives are taken with respect to 7. Equation (5.29) can be solved
analytically in the appropriate limits to retrieve established results. For instance,
in assuming | £ —% |< 1 (e.g., the piston does not stray far from the cylinder center)

and again approximating the piston’s velocity by its formal thermal velocity X =

. Ij\?, (5.29) reduces approximately to (5.27) describing the Brownian motion of

a harmonically bound mass.

Numerical simulations carried out on (5.29) are described elsewhere [30, 31].
These confirm that the piston undergoes sizable random fluctuations about £ =
1/2, with time asymptotic rms values of s = 1/((§ — 1/2)?) extending to a
sizable fraction of the cylinder length (e.g., in Figure 5.6 [32], {ms =~ 0.2 for
£(0) =1/2, u=0.5, N = 3 x 10%, for ensemble size = 1000 cases).

The ensemble average entropy deviation for the adiabatic piston (from its £ =
1/2 maximum) is given by

(AS) _ NGy

k = (In[1—4(£-1/2)%]) (5.30)

Numerical studies indicate that asymptotically this can be of the order of % ~
—10%. In other words, when released from rest in a state of theoretical maximum
entropy (thermal equilibrium), the mesoscopic adiabatic piston evolves to very
large ensemble average entropy reductions.

Preliminary results from molecular dynamic simulations of point masses (model
gas) inside an adiabatic cylinder with a frictionless piston [37, 38] appear to corrob-
orate independently aspects of the Crosignani-Di Porto piston, specifically, that
temperature differences spontaneously evolve on opposite sides of the piston and
that it undergoes spatial oscillations of the form predicted [29, 30, 32].

Importantly, dimensional analysis shows that this second law challenge — sub-
ject to the linearizing approximations above — is extremely sensitive to system
scale lengths and that it is viable only for scale lengths on the order of about a
micron. Within this range, however, one can envision work cycles that have the
net effect of extracting work from its thermal surroundings [33].

Consider the cycle depicted in Figure 5.6. At ¢ = 0 (Step 1), the piston halves
the cylinder into two equivalent states (N, V,,T,). When its latch is removed, the
piston moves freely and the system evolves into a new, lower-entropy state, at
which time the latch is re-inserted (Step 2). Since the system preserves volume
and is thermally insulated from its environment up to this point, one has the
conditions: Vi + V5 =2V, and T7 + T = 2T,. In Step 3 the sections are physically
separated and in Step 4 they undergo reversible adiabatic processes that vary
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Figure 5.6: Thermodynamic cycle for Crosignani-Di Porto engine.

their volumes and temperatures according to: 1_/1,2 = %,Q(TLg)ﬁ, where v is
the ratio of specific heats (v = %) The two subsections are then brought into
thermal contact with a heat bath at temperature T,, undergo reversible isothermal
processes, bringing them back to their original temperature and volumes (Step 5).
Finally, they are rejoined (Step 6) to complete the cycle.

The total work (Wr) for the cycle is given by

V2(T2)7T

WT = Wl + WQ = nRTO |:1n(“—;o) + ln(go):| = nRTO In W
1Va(dl1d2)7=!

1 2

] (5.31)

Since T02 > T1T5 and V02 > V1V4 (from the Step 2 conditions T7 + Ty = 2T, and
Vi + Vo = 2V,), it follows that Wp > 0. In other words, this cycle performs net
positive work, which from consideration of the first law, implies that the work
must come at the expense of heat from the surrounding heat bath, a violation of
Kelvin-Planck version of the second law. The work is due to the spontaneous and
negative entropy variation of the system (W = T'AS) as it goes from Step 1 to
Step 2.

5.4.2 Discussion

The adiabatic piston appears to be a robust theoretical challenge to the second
law in the mesoscopic regime. The magnitude of its entropy deviations are signif-
icant, as is its failure to settle down to a well-defined equilibrium. It remains to
be seen, however, whether a physical embodiment of this gedanken experiment
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can be realized. Prospects for experimental tests are limited to the mesoscopic
regime since the chamber cannot exceed roughly a micron in size. Although this
is within the current art of MEMS and NEMS technology, it is unclear how the
thermomechanical details of its operation will be accomplished — for instance,
the application and removal of the thermal insulation between Steps 4 and 5; the
operation of the latch; the work extraction mechanism; or the parting and joining
of the two subsections. A perfectly-fitting, frictionless, adiabatic piston is also
required. Perhaps something along the lines of nested, multi-wall nanotubes will
prove suitable since these can slide like nearly frictionless bearings [39].

Crosignani and Di Porto offhandedly speculate that the adiabatic piston may
bear on the possibility of life forms being able to extract heat from their surround-
ings in subversion of the second law [32]. Certainly the scale lengths of the piston
and traditional cells coincide well, but the adiabatic piston construction, per se,
does not seem well-suited to organisms. Perhaps a variant of it might be coupled
to some version of a biological Brownian motor or ratchet [?], but this would in-
troduce another damping terms to (5.26) and would require additional analysis.
The issue of life and the second law is taken up again in §10.2.

In summary, the Crosignani-Di Porto adiabatic piston qualifies as a theoretical
perpetuum mobile of the second kind, but its experimental realization appears
problematic at this time. It presents a cogent theoretical challenge to standard
expectations of the second law in the mesoscopic realm and suggests that further
challenges may lurk in this transition region between classical and quantum length
scales.

5.5 Trupp Electrocaloric Cycle
5.5.1 Theory

Recently, A. Trupp proposed a simple thermodynamic cycle involving capacitors
in liquid dielectrics that appears to challenge the second law [40]. Experiments
corroborate key physical processes invoked in the challenge, but no claim of second
law violation has been made.

The Trupp cycle involves the charging and discharging, expanding and con-
tracting of a capacitor immersed in a liquid dielectric. Before introducing the
cycle, let us review some pertinent aspects of dielectrics:

e A dielectric heats as it is polarized in an imposed electric field; conversely, it
cools as the electric field is reduced. This is the electrocaloric effect. Common
analogs are found in low-temperature, magnetic cooling and standard gas
cycles [41]. One can demonstrate an analogous effect with a rubber band:
stretch it quickly and it heats; let it return to room temperature, then slacken
it and it cools.

e Coulomb’s force law between point charges is modified in the presence of
dielectrics, reading,



Chapter 5: Modern Classical Challenges 165

1 ¢ 2
= 47‘(‘60 W = 47T€0I€V (532)

Here r is the charges’ separation, « is the dielectric constant, and V is the
voltage at either charge. Note that F scales as k~! in the case ¢ is kept
constant and as « if V is kept constant. This force relation is correct only
for liquid dielectrics; it fails for solid dielectrics [42].

Trupp argues theoretically, and corroborates experimentally, that (5.32) is
correct only if the signs of the charges are opposite (positive and negative).
If they are the same, then the force should read:

1 2
F= q

= =4 2 .
e, 7202 e,V (5.33)

With this revised force relation, Trupp proposes a thermodynamic cycle in
which electrocaloric heating and cooling can be asymmetric, and thereby, at
odds with the second law.

e A dielectric in an inhomogeneous electric field can exert force on its bound-
aries via the (p- V)E force [43]. It follows that liquid dielectric inside a
parallel plate capacitor will not exert force on its confining plates, while in
contrast, liquid dielectric inside a spherical capacitor will exert compressive
force on the inner concentric sphere. If it performs compressive work, the
dielectric will cool.

Consider two concentric spherical conductors with a liquid dielectric filling
both, forming a spherical capacitor in a circuit as shown in Figure 5.7. Liquid di-
electric fills the inside of both spheres and can move freely between them through
small holes without frictional losses. The system is the capacitor; everything else
(r > 1) is the environment (e.g., circuit, power supply, heat bath). The thermo-
dynamic cycle consists of the following four steps:

Step 1: Switch 2 is closed and the uncharged capacitor is charged.
Electrical work is performed and the dielectric electrocalorically heats.
Switch 2 is opened and the capacitor remains charged since parasitic
resistance is negligible. Work is performed accumulating charges on the
sphere and polarizing the dielectric. Heat evolves via the electrocaloric
effect and is transferred to the heat bath.

Step 2: The radius of the inner sphere is reduced (r; — r3 < 1),
intensifying the local surface electric field at the inner conductor (con-
serving charge) and polarizing the liquid dielectric in the radial volume
between r; and r3 that now finds itself in an electric field. Work is per-
formed compressing the charges on the sphere and polarizing the new
subvolume of dielectric. Additional electrocaloric heat should evolve
in this subvolume due to its polarization, but it is exactly counterbal-
anced by cooling required by the compressive work performed on the
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Figure 5.7: Trupp’s experimental design for measurement of electrostatic force on
conductive hemispheres in a dielectric.

inner sphere by the dielectric via the (p - V)E force. As a result, the
sphere is compressed, but the system does not heat or cool. This is the
crucial asymmetry of the thermodynamic cycle that allows the second
law challenge.

Step 3: Switch 3 is closed and the capacitor is discharged through a
conservative load. Switch 3 is re-opened. Work is performed in the
load. The dielectric depolarizes and electrocalorically cools, drawing
heat from the surroundings into the dielectric.

Step 4: The inner sphere is restored to its original radius (rg — 7).
No changes in heat or work occur.

Trupp’s analysis reveals the net electrical work performed in the electrocaloric
cycle to be

AW, o = / B g2qy, (5.34)
AV
while the mechanical work expended in compressing the sphere is
€ 19
Winech = — —E“dV, (5.35)
AV 2

where AV denotes the sub-volume exposed by the sphere’s contraction in Step 2.
The net gain in work (and, therefore, the net decrease in universal heat) for
the entire cycle is:
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k—1)e
—AQ =AW = QEQdV (5.36)
AV 2
In accord with energy conservation, the total cyclic energy change is zero, but the
cyclic heat and entropy changes are negative, indicating second law violation.

5.5.2 Experiment

Experiments were conducted to test Trupp’s dielectric effect upon which his chal-
lenge depends, specifically, that the electrostatic force between conductors embed-
ded in a dielectric can be independent of x and identical with the force in vacuum
if the potential is kept invariant, as in (5.33).

Experiments were carried out on contract by Ben Weins Energy Science, Inc.
(Coquitlam, BC, Canada), based on designs by Trupp. The primary apparatus
consisted of two spheres that formed a spherical capacitor (Sphere-1: brass, r1 =
2.75cm O.D.; Sphere-2: aluminum, ro = 15.25cm O.D.), a high voltage power
supply (V' = 13.6kV, fixed), dielectric fluid (DC-100, 99.9% paraffin), and a 4-
beam balance (107*N resolution). See Figure 5.7.

Both spheres were cut equatorially into two hemispheres. Both outer hemispheres-
2 were electrically grounded and lower hemisphere-2 was cradled in a plastic hemi-
sphere for support and electrical insulation. The upper hemisphere-1 was rigidly
attached to upper hemisphere-2 by thin plastic struts. Lower hemisphere-1 was
suspended from above by a string, which ran through a hole at the top of upper
hemisphere-2 and was connected to the balance. Hemispheres-1 were connected
to the power supply (V' = 13.6kV). Air or liquid dielectric filled the entire interior
volume (r < r3).

The apparatus was designed to measure the forces (gravitational, bouyant,
electrostatic) on the lower inner hemisphere of a charged spherical capacitor with
different interspherical dielectrics. Under identical configurations, the forces on
lower hemisphere-1 were measured in air and paraffin with OV and 13.6kV bi-
ases. In air, the electrostatic repulsion on lower hemisphere-1 was measured to
be Feqeap(air) = 3 x 107°N verus a theoretical value of Fo,p(air) = Fe,V? =
2.6 x 1073N. In paraffin fluid, the electrostatic repulsion was Fis cqp(paraf fin) =
3 x 103N, after equilibrium was attained. (The force was initially 5 x 1073N,
but fell to 3 x 1073N in roughly 20 minutes. This decrease is ascribed to the
subsiding of transient charge waves in the resistive dielectric as small steady-state
currents were established between the inner and outer spheres. Trupp argues
persuasively that these currents should not influence the equilibrium electrostatic
force on the spheres [44].) These results roughly corroborate Trupp’s assertion
that the presence of dielectric does not affect the attractive force between like
charges at constant potential (two hemispheres in this case).

A second, similar series of experiments was conducted with parallel plate ca-
pacitors. Two parallel stainless steel disks (r = 10.5cm) were suspended in an
80-liter, hollow plastic cylinder. The upper plate was attached to the balance by
a brass rod and wire hook, all of which were grounded. The lower disk plate was
biased either V.= 0V or V = 13.6 kV. Plate separation was 4cm.
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With V = 13.6 kV bias, the electrostatic attraction between the plates in air
was measured to be Fes eqp(air) = 0.047N and while submerged in paraffin, it
was measured to be Fes cpp(paraf fin) = 0.128N = 2.7F,; cup(air) at equilibrium
(initially at 0.1N and saturating at 0.128N after 120 minutes). The difference
between experimental values for attaction in air and paraffin are consistent with
their difference in dielectric constants; the reported value for paraffin is 2.7 < k <
4.7. (Comparable parallel plate experiments were conducted by P. Silow [45] in
1875 at the request of Helmholtz. Trupp’s findings agree with Silow’s.)

5.5.3 Discussion

The dichotomous behavior of the parallel plate and spherical capacitors in the
same dielectric liquid — specifically, that the former displayed effects consistent
with the standard predictions for dielectrics, while the latter did not — supports
the principal new claim upon which Trupp’s challenge rests. Although the re-
sults corroborate Trupp’s dielectric anomaly, they are inconclusive; additional
controls would be helpful. For example, for the three basic control parameters
(spherical /parallel plate capacitor; like/unlike plate charge; vacuum/liquid dielec-
tric/solid dielectric), there are 12 salient test permutations; of these, only 4 were
tested. Additionally, only 2 values of potential were tested, whereas a continuum
would be more convincing,.

Even with positive results, a full test of the electrocaloric cycle with proper
accounting of work and heat influxes and effluxes poses a keen experimental chal-
lenge. Furthermore, any bona fide attempt at second law violation using this cycle
must contend with several countervailing sources of heat (entropy), which include:
a) viscous fluid heating (Steps 2,4); b) Ohmic heating of finite-conductivity dielec-
tric due to current flow between conductors (Steps 1,2); ¢) Ohmic heating of the
load (Step 3); and d) standard thermodynamic inefficiencies in the power supply.
The last of these, in particular, is notable since true second law violation implies
that the electrocaloric process itself must be able to drive the power supply.

Trupp’s capacitor system is reminiscent of Sheehan’s Plasma I (§8.2) and solid-
state (§9.2) systems. All three systems exploit capacitively-stored electrostatic en-
ergy in dielectrics. Together they cover the four primary states of matter (Plasma
I (gas-plasma), Trupp (liquid), solid state (solid)). Of the three, Trupp’s seems the
easiest to study experimentally since it is macroscopic in size (unlike solid-state
devices), operates at room temperature and pressure (unlike plasma systems), and
requires no exotic apparatus. On the other hand, unlike the other cycles, the elec-
trocaloric cycle pivots on an unconfirmed physical effect and it requires an external
power supply to drive it, rather than being driven solely by ambient heat.

As these experiments reveal, electrostatic forces on dielectrics are relatively
weak. In response, Trupp has proposed a comparable cycle involving magnetic
fields and ferromagnetic fluids, which he predicts should display a more pronounced
effect [44]. In it, the concentric spheres are replaced by axially concentric tubes,
the dielectric by ferrofluid, and electric charge by current. An analogous ther-
modynamic cycle would net transform heat into work. These experiments are
currently being pursued.
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P

Figure 5.8: Tri-channel with three billiards. When partition P is removed, all
billiards scatter into Channel B and remain there.

5.6 Liboff Tri-Channel

In classifying second law challenges, a distinction should be made between
closed systems that fail to come to equilibrium (systems for which % = 0 and
Ssystem < Sequit) and systems which demonstrate net entropy reduction (‘Zl—f < 0).
Idealized systems of the former type are well known, for instance, billiards reflect-
ing elastically and specularly at small angles from the inner walls of a square box
such that the inner region of the box is never traversed, or a linear, one-dimensional
gas of elastic colliders that exchange momenta, but which never globally relax to
equilibrium (Tonk’s gas). Mattis gives a nice collection of idealized classical and
quantum systems that come to pseudo-equilibrium locally, but fail to come to
equilibrium globally [46].

Liboff [47] discusses an idealized, purely classical irreversible system that vio-
lates the second law in the sense (% < 0). Consider three, smooth-walled channels
(width 2a, length L > 6a) that mutually intersect at 60° angles and share one
common vertex, as shown in Figure 5.8. Identical disks (r = a) slide frictionlessly
in each channel with equal kinetic energies and rebound perfectly elastically from
all surfaces.

Let the partition P at the vertex be removed and let the disks arrive at the
vertex non-simultaneously. Because of the particular vertex angles, all disks scat-
ter upwardly into Channel B. Once there, they cannot escape, each rebounding
ceaselessly between the other disks, the top endcap and bottom vertex. This
spontaneous congregation of disks is an irreversible process.

The Boltzmann entropy change for this process is calculated by noting that the
configuration space occupied by the disks has collapsed from 3L to L. (Since the
disk kinetic energies are constant, the velocity space volume is unaffected.) One
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has for the change in entropy between initial (i) and final state (f):

AS =S — 8; = k[In(Qy) — In(2)] = k[In(1) — In(3)] = —kIn(3) <0  (5.37)

This irreversible behavior is linked to the vertex, which acts like Maxwell’s
one-way valve (Maxwell demon). From this purely classical example of “an irre-
versible orbit in a non-dissipative system,” Liboff concludes that “the second law
of thermodynamics is not valid in general for idealized irreversible systems” [47].

As a clear example of an idealized, classical, non-dissipative system that demon-
strates counterintuitive irreversible behavior, the tri-channel succeeds, but its ex-
treme requisite idealities and boundary conditions doom it as a legitimate, realiz-
able second law challenge.

First, no realistic macroscopic system displays perfectly frictionless motion,
perfectly elastic collisions and has perfectly precise angles. Even if the system
were reduced to atomic dimensions so as to achieve frictionless, elastic motion, then
the walls could no longer be smooth, nor the vertex perfectly angled. Thermal
agitation (unless T' = 0) would further ruin its ideal behavior. The tri-channel
appears beyond realistic test at any size scale.

More fundamentally, the idealities of the boundary conditions and constraints
(disk fitting perfectly into channels having perfectly smooth walls) lock the system
into a phase space of measure zero. Such systems are known to give counterin-
tuitive, second law violating results, but are deemed irrelevant to realistic ther-
modynamics both because of their zero-measure volumes and because their phase
space trajectories are sensitive to infinitesimal perturbations.

For a finite, bounded, two-dimensional plane with three disks (accepting the
idealities of frictionless and elastic motion), the 11-dimensional constant-energy
phase space manifold, which the system’s phase space point explores, is infinitely
greater in relative classical area than that which the tri-channel explores. In other
words, the constraints and boundary conditions of the tri-channel excises away
virtually all of the standard manifold, leaving a subspace of zero measure, for
which the special initial conditions give an irreversible result.

The tri-channel is not properly a second law challenge any more than scenar-
ios that can be imagined for almost any thermodynamic system. For example,
consider a particular set of initial and boundary conditions among molecules in a
lecture hall that result in a pressure fluctuation for which all air molecules move to
one side of the hall and remain there. Although many such initial configurations
exist, they are so outnumbered by full-room configurations and they are so sensi-
tive to small perturbations that they could not remain on the half-room part of
the phase space manifold, that they are deemed irrelevant to the realistic behavior
of the system?. The tri-channel falls into this category.

In summary, Liboff’s tri-channel is a counterintuitive classical example of ir-
reversible behavior, but one too extreme in its idealities to constitute a cogent
second law challenge.

4See footnote 5, page 43.
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5.7 Thermodynamic Gas Cycles

Several thermodynamic gas cycles have been forwarded as second law chal-
lenges, including ones by R. Fulton, K. Rauen, and S. Amin [48-53]. As of this
writing, they are disputed theoretically [54, 55]. Some experiments have been
conducted [50], but definitive results are not yet available. Among the challenges
discussed in this book, these should be considered longshots. They are classical
gas systems dominated by forces and randomizing molecular scattering on short
distance scales. They appear to be extensive and they do not seem to be governed
by long-range collective behaviors. Furthermore, they do not inhabit extreme
thermodynamic regimes that characterize other modern gas-based challenges, for
example, the low-pressure, high-temperature regimes of the chemical and plasma
systems in Chapters (6-8), or the mesoscopic regime explored by Crosignani, et al.

(§5.4).
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6

Gravitational Challenges

Two modern classical gravitational paradoxes are reviewed and critiqued. Each
is tracable to 19t"-century observations and debates about gravitation and the
second law. To varying degrees, each challenge has experimental corroboration.
Significant theoretical criticisms have been leveled against each.

6.1 Introduction

Classical gravitational thermodynamics enjoys enduring interest owing in part
to surprising, counterintuitive and paradoxical results which regularly emerge
from it [1]. Despite its apparent simplicity, it often plays the spoiler in other-
wise straightforward thermodynamic discussions. In the Newtonian regime, for
instance, the classical Jeans instability [2], the satellite ‘paradox’ [3], and the ‘neg-
ative heat capacity’ associated with astrophysical self-gravitating systems [4], and
gravothermal collapse and oscillation of self-gravitating point-mass systems [5, 6]
run counter to ordinary thermodynamic intuition. In the relativistic regime, the
Hawking process [7], the related Unruh effect [8] and the deep relationship between
the ordinary laws of thermodynamics and the laws of black hole physics stand out
as some of the most surprising and significant theoretical physics results of the
past 30 years [9].

It has long been recognized that gravitation fits uneasily into the standard
thermodynamic paradigm, owing principally to its non-extensivity and scale-free
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coupling. An extensive system is one for which energy and entropy are additive
in the sense that they are the sum of the energies and entropies of the system’s
macroscopic sub-systems [10, 11]. Most thermodynamic systems are extensive,
but gravity and electrostatics provide prominent counter-examples. The potential
energy ¢ of a gravitational system of mass M and size R scales as & ~ %2.
Since M typically scales as M ~ R®, one has ® ~ M®/3 ~ R®. Unlike extensive
thermodynamic variables that scale linearly with system mass and volume (~ R?)
— and quite unlike intensive variables (like pressure and temperature) which are
scale invariant — gravitational potential energy is super-extensive, growing faster
than linearly.

The stability of a self-gravitating system, as prescribed by the virial theorem,
places constraints on the system’s ratio of kinetic and potential energies. Since
gravitational potential energy can grow without bound with the number of par-
ticles N as one enlarges a system, one is faced with a thermodynamic choice.
Either the temperature (kinetic energy) must increase without bound to offset the
potential energy, or the system becomes unstable to local gravitational collapse.
The formation of galaxies and galactic clusters from a more homogeneous mass
distribution directly after the Big Bang is an example of such “curdling.'”

Thus, because of its super-extensivity, gravitational systems cannot usually
be carried to the traditional thermodynamic limit (N — oo and V' — oo, with
N/V or chemical potential y finite) and traditional approaches to common phe-
nomena such as phase transitions fail. It has been claimed by some [12] that
thermodynamics fails for non-extensive systems, while others have shown that by
approaching them through microcanonical formalism one can retrieve modified but
recognizable thermodynamic behavior [10]. Non-extensivity is a common feature
of systems involving long-range forces (e.g., gravitational, electromagnetic).

Whereas on the macroscale gravity exhibits super-extensivity and, thus, in the
parlance of particle physics, it has an infrared divergence, on the microscale point-
mass systems have an ultraviolet divergence arising from their scale-free coupling
(~ 1/r); that is, point masses can approach arbitrarily close to one another and re-
lease an arbitrarily large amount of energy. This is also related to the negative heat
capacity displayed by gravitating systems. Consider a box containing point-mass
gravitators. Via three-body interactions, bound pairs will spontaneously develop.
Statistically, these fall into tighter and tighter orbits through additional scattering
with third bodies. As the pair falls into tighter orbits it releases increasingly more
energy (heat). The more heat that is drawn away from the box, the hotter it
becomes — a signature of negative heat capacity.

Super-extensivity is also exhibited by electrostatic systems by analogy with
gravity, letting mass become charge (M — Q). Systems with charge imbalance and
electric fields (whose energy density pg scales as pg ~ E?) can be super-extensive.
The USD solid-state paradox utilizes the non-extensive nature of capacitive electric
fields, for example.

In this chapter two second law challenges are unpacked. Historically separated
by 125 years, they are thematically joined by the statistical mechanical behav-

n the long term, gravitational curdling is the principal source of universal entropy production
(810.3.2).
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ior of gases in gravitational fields. The first is a recent challenge involving a gas
thermally cycling between an asymmetrically-inelastic gravitator and the walls of
its confining blackbody cavity [13, 14, 15, 16]. The second resurrects a historical
debate between Maxwell, Boltzmann and Loschmidt regarding temperature strat-
ification of a gas (or solid) in a gravitational field [17, 18].

6.2 Asymmetric Gravitator Model

6.2.1 Introduction

In 1885, during some of the seminal discussions on the subject, H. Whiting pointed
out that the molecular velocity sorting performed by the original, sentient Maxwell
demon [20, 21] can be accomplished by non-sentient, natural processes [19]:

When the motion of a molecule in the surface of a body happens to
exceed a certain limit, it may be thrown off completely from that sur-
face, as in ordinary evaporation. Hence in the case of astronomical
bodies, particularly masses of gas, the molecules of greatest velocity
may gradually be separated from the remainder as effectually as by
the operation of Maxwell’s small beings.

Atmospheric evaporation — the loss of gas from an astronomical object when
molecular thermal velocities exceed the escape velocity — is well-known and integral
to the studies of planets, stars, and galaxies [22].

Although Whiting identified a natural process that velocity selects like a Maxwell
demon, he did not specify a physical embodiment and his observation has lain fal-
low for over a century. In this section, a modern relative to Whiting’s demon is
developed. It is fully classical mechanical in that it can be understood entirely in
terms of 19" century physics. All of its components (heat bath, gravitator, cav-
ity, test atom) are classically defined; it utilizes classical gravity; its gas-surface
collisions and trapping, momentum transfers, and net pressure can be understood
in purely classical mechanical terms; and its thermodynamic challenge can be
phrased in terms of traditional heat and work.

This gravitational challenge is based on four observations: (1) thermal particles
falling through a gravitational potential are rendered suprathermal; (2) suprather-
mal gas-surface impacts can be nonequilibrium events; (3) the trapping probability
for an atom or molecule striking a surface can vary strongly with perpendicular
impact velocity and surface type; and (4) in general, atoms trapped on a sur-
face will quickly (within relatively few lattice vibrational periods) reach thermal
equilibrium with the surface and desorb in thermal equilibrium with that surface.
Experimental and theoretical support for each of these observations is substantial
[23, 24, 25, 26]. (In this paper, suprathermal refers to particles with average speeds
greater than the thermal speed, up to several times the thermal speed.)

Briefly, the paradoxical system consists of a blackbody cavity housing a grav-
itator of comparable dimensions and a tenuous gas Figure 6.1. The gas in the
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cavity is tenuous and has a mean free path comparable or greater than the cavity
scale length; therefore, gas phase collisions are insufficient to establish standard
gas phase equilibrium, and gas velocity distributions are determined primarily
by gas-surface interactions. Gas infalling from the walls of a blackbody cavity
suprathermally strikes the gravitator which is asymmetrically inelastic on differ-
ent surfaces and, thereby, asymmetric with respect to trapping probabilities for
the gas. The gas rebounds to different degrees depending on the surfaces’ inelastic-
ities. A macroscopic analog to gas atoms striking S1 and S2 would be dropping a
child’s glass marble on two distinct surfaces, say, steel and a soft rug. The marble
rebounds more elastically from the steel than from the rug. At the microscopic
level, suprathermal collisions (collisions with greater than thermal energies) also
display differences in their elasticities depending on the nature of the gas and
surfaces.

The resultant asymmetries in the net momentum flux delivered to the different
sides of the gravitator by the gas (in essence, a steady-state pressure differen-
tial) results in a net unidirectional force on the gravitator. The force persists
when the gravitator moves with a velocity small compared with the gas thermal
speed. Since a steady-state force can be maintained at a steady-state velocity, in
principle, the moving gravitator can be harnessed to do steady-state work. Since
the gravitator-cavity system is in a stationary thermodynamic state performing
steady-state work, if the first law of thermodynamics is satisfied, then the work
performed must come solely from heat from the heat bath, in violation of the sec-
ond law.

6.2.2 Model Specifications

Formally, the system consists of: (i) an infinite, isothermal heat bath; (ii) a large,
spherical blackbody cavity; (iii) a low-density gas in the cavity; and (iv) a spher-
ical gravitator (Figure 6.1). The walls of the cavity are physically and thermally
anchored to the heat bath. The gravitator is spherically symmetric both geomet-
rically and with respect to its mass distribution. The high degree of symmetry
assumed here is not required, but is analytically convenient. If the heat bath is
uniform in its mass density and if the cavity gas has negligible self-gravity, then the
spherical cavity interior may be considered a gravitational equipotential save for
the gravitational field of the gravitator; in other words, even over long time scales,
the gravitator may be considered the sole source of gravitational force within the
cavity (This can also be shown from Birkoff’s theorem of general relativity.). The
gravitator may be at rest (Figure 6.1a), in rectilinear motion, or in synchronous
rotation about the cavity center (Figure 6.1b).

The gravitator’s two hemispheres are composed of two materials (S1 and S2)
distinct in their inelastic responses to the gas, in that one can write their surface
trapping probability functions as distinct (e.g., S1 is stiff like a semiconductor and
S2 is deformable like a metal lattice with respect to gas collisions). An atom can
scatter from a surface in several ways. It may elastically or inelastically rebound
or, if it loses enough translational energy, it may be trapped. A trapped atom
remains in a weakly bound mobile state until it is either converted to a more tightly
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Figure 6.1: Schematic of idealized model system. Points 1-4 in Figure la will
apply to discussion of Figure 2.

bound physisorbed or chemisorbed immobile state (sticking) or it desorbs due to
random thermal excitation from the surface. Experiment and theory indicate that
typical trapping times range from on the order of a few nanoseconds to hundreds
of microseconds. This corresponds to roughly 10* — 10? lattice vibrational periods
of a typical solid. As a result of their relatively long and intimate contact with the
surface, trapped atoms is taken to desorb in thermal equilibrium with the surface.

A number of models have been developed to describe trapping; most are qual-
itatively similar. Here we use the “ion cores in jellium model” (ICJM) which is
an extension of the Baule-Weinberg-Merrill model [24]. In the ICJM, the trapping
probability for atom A on surface j, Piqp(j), is given by

(1+ mTZ(Aj))zKEL

AGEE I KEL — Es(5) + W(j))

ms(5)

Ptrap(j) = [1 -

(6.1)

provided that Piqp(j) > 0, otherwise Pqp(j) = 0. Here ma and mg(j) are the
masses of the gas atom A and surface j atoms (j = 1,2); KE, is the perpendicular
kinetic energy component of A with respect to the surface; E4(j) is the energy
of trapped A on surface j; and W(j) is the depth of the potential energy well
associated with surface j. Normal energy scaling is assumed; that is, there is
little conversion of surface-parallel momentum to perpendicular momentum during
scattering. The ICJM describes well numerous experimental results [24]. Other
standard trapping models will yield similar results. In fact, chemically distinct
surfaces are unnecessary; mere morphological difference can suffice since what is
essential here is not trapping probability, per se, but thermalization probability.
Nine parameters specify the system; they are: T = blackbody cavity tem-
perature; ma4 = mass of gas atom A; mg = mass of spherical gravitator; ra =
radius of gas atom A; rg = radius of spherical gravitator; r. = radius of spherical
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blackbody cavity; n.., = average number density of gas atoms A in the cavity
volume; Pprqp(1) and Ppep(2). By defining the following scaling parameters —

thermal speed (v ~ 4/ Z—q;), incident surface impact speed for atoms falling from

the cavity wall (vi,e ~ \/(M) + %), mean free path for gas phase

el
m), and the first velocity moment of the trapping prob-
. cavT’y

collisions (A ~
ability (< p(j) >= ma [, v1 Pirap(j)dvL) — one can circumscribe the paradox’s

viable parameter regime in terms of six dimensionless variables as: a = ’;t—hc >1;

— <p(1)> . — e L8 = A L MATcauVehVi,. .
6 = <p(®)> 3# ]_7 Y= :_G > ]., o = Pe—— 2 1, € = T‘f < 1, and
¢ = %“G‘”n < 1. Here k, o, and G are the Boltzmann constant, the Stefan-

Boltzmann constant, and the universal gravitational constant.

The two primary requirements for the paradox are that the gas-surface impacts
are, on average, suprathermal (@ > 1) and differentially inelastic between S1
and S2 (8 # 1). The gravitator must fit in the cavity (y > 1) and the gas
must fall through a sufficiently large gravitational potential for the impacts to be
suprathermal (v > 1 for @ > 1), but not so large that the gravitator accumulates
a dense (collisional) atmosphere or that reflected or desorbed atoms cannot reach
the cavity walls. Infalling atoms must reach the gravitator without excessively
thermalizing via gas phase collisions (§ > 1). For simplicity of analysis — but not
strictly required for the challenge — two additional constraints are made. First,
gas kinetic energy fluxes are much smaller than radiative energy fluxes (¢ < 1);
in other words, blackbody radiation dominates the system’s energy transfers. In
this way, small surface temperature variations arising from inelastic collisions are
quickly smoothed out by compensating radiative influxes or effluxes, and surfaces
may be taken to be near the blackbody cavity temperature. Second, the self-
gravity of the atmosphere of A is negligible compared with the gravity of the
gravitator (¢ < 1). These six constraints are physically reasonable and mutually
attainable over a broad parameter space. Outside the prescribed inequalities, the
system analysis becomes more complex (e.g. € > 1, ( > 1, § < 1) or the paradox
fails altogether (e.g. a, 3, v =1).

This model is approximated well by a moon-sized gravitator in a low-density
gas housed in blackbody cavity of comparable dimensions. The following system
self-consistently meets all the above physical assumptions and constraints: ma = 4
amu (He atom), mg = 2x10% kg, r4 = 1071% m, rg = 1.6 x 10° m, r, = 3.21x 105
m, T = 2000 K, n¢q = 5x 1010 m=3, B, (1) = E,(2) = 2kT, W(1) = W (2) = 4kT,
ms(l) = 7 amu, and mg(2) = 96 amu. For this system, « = 1.7 > 1, § # 1,
7=2>1,8=T70>1€e~10"12 <« 1, and ( ~ 10719 <« 1. Surfaces S1 and S2
are identical except for the masses of their surface atoms. For the discussion to
follow this will be called the standard gravitator.

6.2.3 1-D One-Dimensional Analysis
(Note: The following 1-D analysis should not be taken at face value. It has been
cogently criticized by Wheeler (§6.2.5) [27].)
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h

vy

Figure 6.2: One dimensional velocity distributions f(v,) for gas atoms at locations
1-4 in Figure la. Solid (dashed) lines indicate distributions interacting elastically
(inelastically) with gravitator surfaces. f; taken at instant of desorption from wall;
f2 taken just before surface impact; f3 taken just after reflection/desorption from
surface; and f; taken just before collision with cavity wall. Distributions depicted
for the case %fg‘_rc) = kT. Average velocities of f; distributions indicated
on abscissa. (See Wheeler (§6.2.5) for conflicting analysis [27].)

Let the system settle into a stationary state. When steady state is reached gas
is thermally cycled continuously between the gravitator and the cavity walls: gas
falls suprathermally onto the gravitator, inelastically rebounds to different degrees
from the hemispheres, and is rethermalized in the cavity. Since the surface trapping
probabilities for S1 are S2 are different, the fluxes of gas atoms striking S1 and S2
are partitioned differently between those which are reflected suprathermally back
to the cavity walls and those which are trapped and desorbed thermally. As a
result of this differential partitioning, the momentum fluxes to the hemispheres
are different; these amount to a net pressure (and force) on the gravitator. This
pressure can be understood qualitatively by following a velocity distribution of test
particles through the cavity in light of conservation of linear momentum. In this
analysis, the gravitator will be treated one dimensionally; however, the numerical
analyses which follow indicate this argument generalizes to three dimensions.

Let the gravitator begin at rest at the center of the cavity and consider the gas
atom velocity distributions f; — f4 in Figure 6.2 corresponding to the cavity po-
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sitions 1-4 in Figure 6.1a. For discussion, the solid-lined distributions correspond
to those undergoing purely elastic (e) collisions and dashed-lined distributions to
those undergoing purely inelastic (ie) collisions; real distributions will be some-
where in between these. Distribution f; is a half-Maxwellian velocity distribution
of atoms just desorbed from the cavity wall, starting its fall toward the gravitator.
A differential of particle density dN can be expressed as

dNy = fi1(v)dv = (%)1/261‘])[—141)2](11}, (6.2)

where A = (557) = U;f. During its fall through the gravitational potential to
point 2 in Figure 6.2a, distribution f; evolves into suprathermal distribution fo
(depicted just before impact). Notice fo has been accelerated en masse such that
it is velocity space compressed and has a net drift; its minimum surface-impact

w At impact the development of the elastic and
GTc

inelastic cases diverge. In the purely elastic case, the atoms reflect spectrally
(f3(vy) = fa(—vy)), decelerate against gravity, and return to the walls as a thermal
distribution f4, the velocity inverse of fi; that is, fi(vy) = fi(—v,). At the wall,
fa is trapped, rethermalized and recycled as f; again. (By an appropriate choice
of Eg(wall), Wg(wall) and m4(wall) and or by increasing its effective surface area
with a dendritic or zeolitic structure, the trapping/thermalization probability for
the wall can be made essentially unity (Ppqp(wall) =1).)

By conservation of linear momentum, the net impulse to the gravitator in the
elastic case from fi to fais: (Ap)grav,e = MaN((vy) s, — (vy)f) = 2maN(vy)y,,
where N is the total number of gas atoms in the original distribution f; and
(vy) s, is the average velocity of fi. In the purely inelastic case, fs is trapped on
the surface and is thermalized when it leaves. Only the slashed portion of f3, the
tail of the distribution (v > v;,.), escapes directly the gravitational potential well
and returns to the cavity wall to be recycled as fi1; the rest (f3(v < vin.)) falls
back to the surface, where it is retrapped, rethermalized and tries again until it
leaves the gravitator in the (v > v;p.)-tail. The inelastic f4(v) is

fa(v) = [%

where B = (2Gmg(% - Tlc)] Here 7. 4 are the cavity and gravitator radii, mg is

velocity is vipe =

1120 - exp|—A(w? + B)], (6.3)

the gravitator mass, and G is the universal gravitational constant. The critical
feature is that (f4);c is not thermal and has a larger average velocity than (f4)e,
ie. (vy)fie > (vy)fse (See fq in Figure 6.2.), which leads to larger than average
momentum and kinetic energy fluxes, as shown below.

The net impulse to the gravitator due to the inelastic collisions of fi-f4 is
(Ap)gﬂlv,ie = mAN[(“y)fl_(vy)h]' Since ((Uy)fbie 7é (vy)f4,€7 one has (Ap)grav,e 7é
(Ap) grav,ie- In other words, there is a net impulse imparted to the gravitator by
the gas due to the asymmetry in inelasticity between S1 and S2. If there is a
steady-state flux of gas to and from the walls and gravitator (Figure 6.1a), then
there is a steady-state net force on the gravitator.

Kinetic analysis indicates that the pressure difference between hemispheres can
be on the order of 25% of the average gas pressure near the gravitator. Analysis
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also indicates this pressure asymmetry should persist when the gravitator is moved
off center and placed in synchronous rotation about the cavity center Figure 6.1b
with a tangential speed up to about 20% of the gas thermal speed. In this case,
the gravitator can generate a steady-state torque while maintaining a steady-state
angular velocity about the cavity center.

The maximum theoretical power achievable by the synchronously rotating grav-

3
MATGVy)

itator scales as P ~ y—=5—, where y =~ 107! is a dimensionless constant in-
A

corporating system constraints (« - {) above. For the standard gravitator, the
maximum steady-state power output should be on the order of 10° W. At the
temperature of the universal microwave background radiation field (T" = 2.73 K)
it should generate, in principle, a maximum of roughly 10* W.

This system is not in and cannot reach thermal equilibrium; rather, it is in
a steady-state nonequilibrium. The irreversibility of this process can be traced
to the inherently irreversible nature of the suprathermal surface impacts coupled
with the asymmetry in the inelastic responses of the two hemispheres. Regardless
of whether work is extracted from this system, this is a peculiar state of affairs
since, in a simple blackbody cavity, one would expect a single velocity distribu-
tion to evolve, but it does not. Contrary to normal expectations, however, such
nonequilibrium stationary states are not forbidden. For instance, confined two-
component plasmas (one with both positive and negative species) with non-zero
plasma potentials — in principle, virtually all known plasma types — are inher-
ently nonequilibrium systems. It has been shown that electrostatically confined
one-component plasmas (say, electrons in a Penning trap) can reach thermal equi-
librium, but when the second species (say, positive ions) is present, the very sign
of the plasma potential (that might confine the first species) guarantees that the
second species is not confined, and therefore, not able to reach thermal equilib-
rium. (By itself, the Debye sheath at the edge of almost all plasmas is a highly
nonequilibrium structure that guarantees the plasma is a nonequilibrium entity.)
Plasma paradoxes involving the second law are taken up in Chapter 8.

6.2.4 Numerical Simulations

Three-dimensional numerical test particle simulations of this system were per-
formed. A simulation consisted of integrating the equations of motion of a single
test gas atom in the cavity with the gravitator at rest in a background gas and
recording the test atom’s dynamical variables.

The motion of the test atom was subject to the following principles and pro-
cesses: (a) Newton’s laws of motion; (b) universal law of gravitation; (c) conser-
vation of linear and angular momenta and energy; (d) trapping and desorption
probabilities that follow (1); and (e) surface trapping and gas phase collisions that
thermalized the test atom; otherwise all collisions were elastic. Each test atom
was tracked for on the order of 1-5 years of physical time. During this interval,
the test atom traversed the cavity interior thousands of times and underwent tens
of thousands of surface and gas-phase collisions, roughly half of which were ther-
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malizing. Collisions included those on the cavity walls and gravitator and in the
gas phase; they occurred in various ratios depending on the system parameters,
but in typical rough ratios of about 1:1:1072, respectively. Newton’s equations of
motion were integrated via a standard fourth-order Runge-Kutta scheme. Solu-
tion convergence was verified via a series of simulations that independently varied
the length of the time steps, the number of test atom collisions, and the initial
conditions of the test atom. Through these it was verified that the system had
settled into a stationary state and that initial conditions did not appreciably affect
final results. Code accuracy was checked via known solutions and limiting cases.
It is emphasized that in no way was the paradoxical effect ‘programmed’ into the
simulations; it is a robust, emergent phenomenon.

6.2.4.1 Velocity Distributions

Numerical simulations provided velocity distributions for the test atom in the
cavity volume between the gravitator and cavity wall at positions of azimuthally
symmetric ring- or dome-shaped test patches (See Figure 6.3) located on spherical
shells nested within the cavity walls and concentric with the gravitator. Velocity
distributions were built up by following the test atom through the cavity and
recording its velocity components as it crossed a test patch from 1,500 - 3,000
times. Velocity components v,, vy, and v, were measured directly and v, =
Zve + Lv, 4 2v, was computed from these. The radial component of velocity v,
is normal to the test patch surface.

Velocity distributions f(v,), f(vy), f(vs), and f(v,) were obtained for test
patches specified by radius rq¢ < rpaten < re = 2.01rg) and delimited by polar
angular extent (0 < 00 < Opaten < Onign < 7 rad). The azimuthally-symmetric,
spherical gravitator was at rest at the center of the spherical blackbody cavity,
therefore, all test patches were azimuthally symmetric. Velocity distributions were
normalized with respect to patch area, total number of patch crossings, and total
time the test atom spent in the cavity. The fiduciary velocity distribution, the
distribution against which all other distributions were calibrated, was taken to be
that for the standard gravitator for 3000 test patch crossings at radius 7peten =
1.605 x 10°m = 1.003r¢ = 0.57. and polar angular extent %71’ < Opaten, <  rad;
this corresponds to a 30° solid dome (0.842 steradians) located just above the
gravitator surface over the bottom (S2) hemispheric pole. This 0.842 steradian
dome (hereafter, a 30° dome) covers 6.7% of the surface area of its sphere and,
therefore, gives a relatively local measure of system dynamics.

In Figure 6.4, velocity distributions are presented for the standard gravitator at
roughly midway between the gravitator surface and cavity wall for 30° domes over
the top (S1) and bottom (S2) poles. These display several characteristics which
will be useful in interpreting the phase space diagrams to follow. First, f(v,) and
f(v,) are nearly identical for S1 and S2 — within the limits of statistical fluctuation
— and all are roughly Gaussian. Consistent with the azimuthal symmetry of the
system, f(v,) and f(v,) are roughly the same. The inferred temperature of S1
distributions (T(S1)~ 1850K) is greater than S2 distributions (T(S2)~1500K);
all are cooler than the cavity temperature (2000K). The distributions’ reduced
temperatures are consistent with the velocity space compression predicted for their
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Figure 6.3: Schematic of gravitational system with test patch.

fall through the gravitational potential; that T(S1)>T(S2) is attributable to S1
being more inelastic than S2.

Velocity distributions f(v,) and f(v,) are highly non-thermal, non-Gaussian
distributions, and are similar to the theoretical ones in Figure 6.2. The distinctive
effects of gravity are more evident in these distributions, as well as the critical
asymmetries between S1 and S2 gas-surface interactions, which are the basis of the
challenge. The similarities between f(v,) and f(v,) occur because, over the poles,
the r- and y- directions are roughly aligned. They are not, however, perfectly
aligned except for # = 0, so the distributions are, in fact, distinct; the most
noticable differences occur at low velocities, where the depth of their local minima
is greater for f(v,). The distributions display twin peaks; these are evidence of net
drift velocities arising from the acceleration of the distributions en masse by the
gravitational field of the gravitator. (At other radii the peaks of the distributions
are shifted in accord with gravitational effects.) The apparent magnitude of the
drift (~ 1500 m/sec) is about a factor of two below predictions for thermal, half-
Maxwellian velocity distributions infalling from the walls and rebounding from the
surface, however, this is understandable since the distributions are amalgams of
many types of test atoms which camouflage the drift, e.g., inflow from the walls,
reflection and outflow from the gravitator, thermalizing atom-atom collisions in
the gas phase, and atoms just traversing the cavity volume randomly.

Comparing f(vy) and f(v,) between S1 and S2, one observes two main differ-
ences. First, the twin peaks of the S2 distributions are fairly sharp and symmetric
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Figure 6.4: Representative x-, y-, z-, and r- velocity distributions for standard
gravitator for 3000 atomic crossings of 30° dome test patches over S1 (a) and
S2 (b), roughly midway between gravitator surface and cavity walls (rpeten =
2.475 x 105m).
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with respect to velocity inversion (v — —v), while the S1 peaks are more rounded
and asymmetric. This is consistent with the different elasticities (surface trapping
probabilities) of the surfaces. The bottom hemisphere (S2) is paved with high
mass atoms (ms(2) = 96 amu), which renders suprathermal collisions by the test
atom (m4 = 4 amu) fairly elastic (See (1)); therefore, one expects near (but not
exact) velocity inversion symmetry. S1, on the other hand, is paved with low mass
atoms (ms(1) = 7 amu), making suprathermal collisions fairly inelastic. Many of
these gas atoms are trapped and thermalize on S1 and must evaporate back to
the walls. As the data demonstrate, this should make f(v,) and f(v,) asymmetric
with respect to velocity inversion. Also, as predicted above ((6.3) and Figure 6.2),
such surface inelasticity should give rise to additional high-velocity particles in the
tail of f(v) outflowing from the gravitator surface. This counterintuitive result is
also evident in the data. Tails are evident in both f(v,) and f(v,) for both S1
and S2, with the strongest tails evident in S1, the more inelastic of the surfaces.
Because the average velocity of the inflow f(v,) for S1 and S2 are comparable,
while their average outflow velocities are different, by conservation of linear mo-
mentum, there should be a marked difference in the net momentum flux densities
(pressures) exerted on the two gravitator hemispheres by the gas.

The velocity distributions in Figure 6.4 evidence four primary results. First,
velocity distributions emerge from the long time average behavior of a single test
atom. Additional simulations verified that ensemble average distributions are iden-
tical to the time average distributions such that this system meets conditions of
a statistical ergodic ensemble. Second, these velocity distributions are stationary,
nonequilibrium entities. They are “stationary” because, once they emerge from
the time-average statistical behavior of the test atom, they are temporally un-
changing thereafter. They are “nonequilibrium” because of the irreversible nature
of the suprathermal gas-surface interactions, coupled with the fact that gas phase
collisions are too rare to establish standard gas phase equilibrium; gas velocity
distributions are determined primarily by gas-surface interactions. (Suprathermal
gas-surface collisions must, on average, be nonequilibrium events, otherwise the
second law would be violable.) Third, both f(v,) and f(v,) display gravitational
drift that is responsible for the distributions being suprathermal and, therefore,
subject to nonequilibrium, irreversible gas-surface collision processes. In contrast,
f(vg) and f(v,) do not show drift and are more nearly thermal; they do, however,
show the effects of velocity space compression. Fourth, f(v,) is distinct between S1
and S2. S1’s distributions display both greater velocity asymmetry than S2’s and
also display more high-velocity particles in their outflow. Together, these latter
three points provide strong support for the fundamental physical process proposed
to explain the paradoxical behavior of system. Compare, for instance, f(v,) to
the hypothesized one-dimensional distributions in Figure 6.2 and equation (6.3).

6.2.4.2 Phase Space Portraits

(Note: What would otherwise be Figures 6.5-6.7 of this section appear as Color
Plates I-I11.) Phase space diagrams were constructed from multiple, sequential ve-
locity distributions (similar to those in Figure 6.2) for which one system parameter
(e.g. test patch radius, polar angle, cavity temperature) was discretely and sys-
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tematically varied. Contours in the phase space diagrams are contours of constant
phase space density. They are analogous to contours of constant altitude used
in topographic maps; interpreting them follows similar principles. Phase space
diagrams are useful in that they condense the salient features from multiple veloc-
ity distributions and allow one to see both local details as well as global patterns
within a system. Integration of the local f(v) or phase space diagrams, particularly
to obtain velocity moments, allows one to assess local and global thermodynamic
quantities such as number density, particle flux, pressure, kinetic energy density,
and entropy density.

The maximum phase space density was arbitrarily assigned value 100, cor-
responding to the maximum value of f(v) for the fiduciary velocity distribution
discussed above. For a given velocity distribution, velocities were attributed to
each fraction of this maximum phase space density — 90%, 80%, .... 10%, 5%,
2.5%. Each distribution was thus reduced to discrete set of velocities correspond-
ing to its set of fractional phase space densities. These were arranged sequentially,
graphically plotted, and then smooth phase space contours were drawn by inter-
polating between the points.

Color Plate I depicts the phase space diagram v, versus r (radius from cavity
and gravitator centers) for 30° domes over the top (S1) and bottom (S2) poles of
the standard gravitator. Owing to the azimuthal symmetry of the system, the v,
versus  diagram should be the same; comparison of their velocity distributions
verified this. Plate I was constructed from 24 equidistantly radially-spaced velocity
distributions. For reference, the two f(v,) shown in Figure 6.4 are incorporated
into Plate I at 7 = 2.475 x 10°m. The vertical extent of the error bars in Plate I
indicate the coordinate separation of the discrete velocity distributions from which
the diagrams were constructed; the horizontal error bars indicate the uncertainty
in a contour’s velocity due to statistical fluctuations in the data.

In broad terms, the diagram consists of two types of contours: i) a series
of open, slanted, nearly linear/parallel, relatively high-velocity, low phase space
density contours (2.5% - 30%); and (ii) a series of nested loop contours (40%
- 80%) at lesser velocities and lesser radii. The loss of the higher order loop
contours with increasing radius corresponds to the loss of gas number density with
increasing radius from the gravitator; this is akin to the radial exponential decay
of typical planetary atmospheres. (Here, however, the situation is complicated
by two caveats: a) the atmosphere is distended beyond the radius of curvature
of the planet; and b) the cavity walls act as an additional boundary condition.)
Velocity integration gives a roughly exponential decay of particle number density
with radius. From the law of atmospheres, P = Poezp[m%ﬂ] ~ Poexp[%],
one estimates the theoretical e-folding radius to be ;7. = 3 x 10°m. Integration of
the phase space plot gives a numerical estimate of ,,r. = 1.5 x 10%m; these are in
reasonable agreement, given the caveats.

The slant in the series of open, nearly parallel contours (2.5% - 30%) are
consistent with two effects: radial density loss and gravitation acceleration and
deceleration. If the cavity atmosphere were composed of uniform density, non-
accelerated Maxwellian velocity distributions, then the contours would have no
slant and would be aligned vertically, perpendicular to the abscissa.
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Several global characteristics of the plots are apparent. First, there is a high-
degree of symmetry with respect to velocity inversion (v — —v). This is expected,
given the azimuthal rotational symmetry of the system. There is, however, only
a fair degree of symmetry with respect to mirror reflection across the abscissa.
Were the gas isotropic in density and temperature throughout the cavity, then
one would expect no slant and perfect reflection symmetry, but this is not the
case. Because of the location of the test patches, there is some mixing of x and r
directions, and as a result, there is evidence of the radial gravitational acceleration
in the v, —r phase space plot as well as hints of the S1-S2 asymmetry with respect
to gas-surface interactions. Specifically, there is a difference in radial extent of
the low-velocity, looped contours, in that the nested loops for S2 extend further
in radius than those for S1. Also, there is a minor mismatch in velocities (~ 100
m/sec) in the high-velocity, open contours (2.5% - 10%) between the S1 and S2
cases, these indicating more high-velocity tail particles over S1 than over S2. As
explained earlier, this is consistent with S1 being less elastic than S2 with respect
to gas-surface collisions. (A phase space diagram not shown here, v, versus ms(1)
for the standard gravitator (with m4(2) fixed at 96amu), substantiates the claim
that low velocity particles in the bulk of f(v) migrate to the high velocity contours
as the elasticity of the collision surface (in this case, S1) is reduced by reducing
the mass of gravitator surface atoms.) Overall, Plate I suggests only weakly the
dynamic asymmetry responsible for paradox. Plate II, which follows, evidences it
more ostensively.

Plate II presents the v, versus r phase space diagram for the standard gravitator
constructed from the same 24 test patches used for Plate I: radially spaced, 30°
polar domes over S1 and S2. Again, f(v,) from Figure 6.4 may be used as reference.
Recall that gravitational acceleration is solely in the radial direction and that,
given the patch location over the poles, distributions f(v,) and f(v,) are similar.
Three types of serial contours are apparent: i) open, slanted, roughly linear and
parallel, high-velocity, low phase space density contours (2.5% - 30%); ii) slanted,
nested chevron contours of medium- to high-velocity and high density (40% -
100%); and iii) nested finger-shaped loops with low velocity and low density (5%
- 20%). The finger-shaped contours are due to the local minima between the twin
peaks in f(v,) (See Figure 6.4). They are absent in Plate I because f(v,) are single
peaked distributions. These finger contours carry little energy or momentum in
their particles.

The chevron contours represent the peaks in the local velocity distributions, as
indicated by their large phase space densities (40 - 100%). Their progressive radial
disappearance signals the radial decline in gas density within the cavity. Their
slants relative to the axes — they match those of the open, linear contours — are
evidence both of radial gas density decline and en masse gravitational acceleration
and deceleration of f(v,). For inflow to the gravitator (Quadrant IT and III,
hereafter, Q-IT and Q-III), the slant indicates acceleration with gravity, while for
outflow from the gravitator (Q-I and Q-IV) indicates deceleration against gravity.
The magnitudes and signs of the slope are in reasonable quantitative agreement
with the increase (decrease) in drift velocity expected for gravitational acceleration
(deceleration). The open, roughly linear contours have similar interpretation as
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for those in Plate I.

The asymmetries in Plate IT are more pronounced than those in Plate I and
support the physical mechanism of the challenge. Quadrants II and III are fairly
symmetric with respect to mirror reflection about the abscissa; this indicates that
the radial inflow of atoms from the cavity walls to S1 and S2 are comparable.
The outflow from S2 (Q-IV) is almost the velocity inverse of S2 inflow (Q-III),
but with two differences: (1) Q-IV’s intermediate contours (40% - 60%) are less
pronounced than in Q-III, indicating fewer medium velocity atoms; while (2) extra
atoms appear in Q-IV as high-velocity tail particles, indicated by the relatively
higher velocity of the 2.5% - 20% linear slanted contours. Overall, the approximate
velocity inversion symmetry of Q-IIT and Q-IV is consistent with the fairly elastic
nature of the S2 surface. This is also borne out by statistics on atom-surface colli-
sions. Of the 2.1 x 10° gas-surface collisions on S2 recorded over all 24 contributing
simulations, 90% resulted in elastic rebound (no trapping), while only 10% were
inelastic (trapping, thermalizing) events.

The most noticable asymmetry in Plate II is in the outflow from S1 (Q-I); it is
different from that of the other three quadrants in several significant ways. First,
Q-T entirely lacks 80% and 90% chevron contours, unlike Q-II,-III, and -IV. More-
over, the Q-I chevrons that are present are significantly smaller than those in the
other quadrants. Second, Q-II, -III, and -IV have open 30% contours, while Q-I has
a chevron. Taken together, these indicate a dearth of low- and medium-velocity
particles in the outflow from S1 relative to S2. Offsetting this deficit, however, the
open linear contours (2.5% - 20%) in Q-I are noticably upshifted in velocity rela-
tive to the other quadrants, roughly 500 m/sec with respect to Q-IV and nearly
1000 m/sec with respect to Q-ILIII. The spreading of these contours in velocity
space indicates more high velocity particles in Q-I than elsewhere. Together these
indicate two major effects. First, S1 collisions are more inelastic than S2 collisions.
This is also borne out by collisions statistics: of the 2.2 x 10° S1 surface collisions,
28% were elastic (non-trapping), while 72% were inelastic (trapping, thermalizing)
— the rough inverse of the S2 case above. Second, the contours at large radii near
the cavity walls (r = 3.2 x 105m) suggest the average velocity of the gas and the
momentum flux density (pressure) delivered to the wall is greater for S1 than for
S2. Velocity integration of Plate II bears this out. First velocity moments were
taken over S1 and S2 near the cavity wall (r = 3.205 x 10°m = 0.998r,.); these indi-
cated that, at the cavity walls over their respective surfaces, the average velocity of
gas from S1 exceeds that from S2: (v,)s1 = 2.0 x 10°m/sec and (v;.)g2 = 1.7 x 103
m/sec. Similarly, taking the ratio of the second velocity moments, the ratio of mo-
mentum flux densities delivered to (i.e., gas pressure exerted on) the cavity walls
by S1 and S2 gas fluxes is Ilzgég ~ 1.3. By conservation of linear momentum,
a commensurately greater pressure is exerted on the gravitator by gas on the S1
hemisphere than on the S2 hemisphere. Moment integrations of these phase space
diagrams quantitatively agree with previous numerical estimates of gross force im-
parted to the gravitator discussed above, and both of these agree quantitatively
with the previous theoretical estimates based on kinetic considerations. Overall,
Plate II qualitatively and quantitatively supports the fundamental microscopic
processes hypothesized to explain the paradoxical behavior of the system.
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Gravitator mass and cavity temperature play reciprocal roles in the operation
of the system. At low temperature, the gas freezes out on the gravitator and
cannot cycle to the walls, while at high temperatures the effective surface trapping
probabilities on S1 and S2 approach one another; i.e., they become symmetrized.
In either case, the paradox is lost. Conversely, at high gravitator mass the gas is
strongly bound to the gravitator and does not cycle to the walls, while at low mass
the gas surface collisions are effectively thermal (rather than suprathermal); i.e.,
they are symmetric for S1 and S2. Again, the paradox fails. It is only in the narrow
regime where the gas atom’s gravitational potential energy (P.E.,) and its thermal
energy (kT') are comparable that the paradox will succeed. Specifically, it will be
shown in Plate III that the viability range is roughly 0.25P.FE.;, < kT < 4P.E.,.
Because of the reciprocal roles played by temperature and gravitator mass in the
operation of the demon, it suffices to study just one of them.

With this in mind, Plate III presents the v, versus T (cavity temperature)
phase space diagram for the standard gravitator for (30°) polar domes over S1 and
S2, midway between the cavity walls and gravitator. It is constructed from 20
individual velocity distributions over the temperature range 500K - 8,000 K. (This
covers the temperature range over which the standard gravitator is most viable.)
The diagram consists of three types of curves: i) high- and medium-velocity, open,
nested parabolas (2.5% - 30%); ii) nested closed loops (30% - 50%); and iii) low-
velocity, nested line/parabolas (5% - 20%). The nested line/parabolas arise due
to the local minima between the twin peaks in f(v,.) near v, = 0. Like as for Plate
IT, these contours are of little dynamical importance to the system. The 30%-50%
closed loops are identified with the local maxima in the twin peaks for low temper-
atures (500K - 3000K). At higher temperature, as expected, velocity distributions
broaden, so that these high-density contours are lost as particles move to higher
velocity, lower phase space density contours. The open, nested curves (2.5% -
30%) are approximately parabolic; this consistent with the quadratic relationship
between thermal energy and velocity (KT ~ mwv?). All curves converge at the
origin (T=0, v=0), as expected for a frozen gas.

Several features in Plate III are noteworthy. Quadrants II and IIT are nearly
mirror images of each other — except for a slightly more pronounced 40% loop in
Q-IIT — indicating that the inflow of gas to S1 and S2 are similar. Quadrants IIT
and IV are similar, except for the following minor differences: i) the 30% contour
is open in Q-III, but closed in Q-IV, and ii) the 40% contour is less pronounced in
Q-IV than in Q-III. The overall similarity of Q-III and Q-IV is, again, consistent
with nearly elastic atom-surface interactions on S2 and, again, this is borne out
by collision statistics.

Similarly as for Plate II, Q-I is distinct from the other quadrants. It lacks
a 50% loop contour entirely; its 40% contour is vestigial; and its 30% contour
extends only to T < 3000K, whereas in other quadrants they are open out to
8000K. As for the other phase space diagrams, what Q-I lacks in low velocity
particles it makes up for in high velocity ones. The 2.5%-10% contours of Q-I are
significantly more expansive in velocity space than their counterparts in the other
quadrants — over 1000 m/sec faster at the higher temperatures. As before, these
carry disproportionately large momentum and kinetic energy to the walls.
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In summary, Figure 6.4 and Plates I-III support at a microscopic level, both
qualitatively and quantitatively, the physical basis of the challenge. Specifically,
these phase space diagrams verify that: a) stationary-state velocity distributions
emerge from the long time average behavior of a single test atom; b) the system
maintains a cavity-wide, steady-state gas phase nonequilibrium; ¢) the velocity-
space symmetries (asymmetries) of the velocity distributions reflect the geometric
and parameter space symmetries (asymmetries) imposed on it; and d) the gas
phase number density decrease radially from the gravitator surface to the cavity
wall, as expected for a planetary atmosphere. Thirdly, these results support a
more general conclusion: that two distinct, steady-state gas phase nonequilibria
can interact with one another and still be simultaneously maintained in a single
blackbody cavity. Even aside from any second law challenge these two simulta-
neously maintained distinct gas phase equilibria are peculiar and run counter to
normal thermodynamic expectations. Analogous steady-state, nonequilibria have
been proposed for plasma, solid state, and chemical systems and will be discussed
in later chapters.

6.2.4.3 Gas-Gravitator Dynamics

In addition to the velocity distributions and phase space diagrams, explicit calcula-
tions were made of the force and torque exerted on the gravitator by the test atom
while the gravitator was at rest and in motion, both at the center of the cavity
(Figure 6.1a) and offset from the cavity center so as to circulate within the cavity
(Figure 6.1b). These numerical simulations corroborate the analysis above, indi-
cating a net force (and pressure) can persist on an asymmetric gravitator within
the range of the system constraints (o - ). The values of all system parameters
(masses, densities, temperatures, radii, etc.) were varied through and beyond the
limits of the viability constraints a. - (. As in previous sections, test atom collisions
were of several types: on S1 and S2 (incident collisions followed by either elastic
rebound or by trapping and thermal desorption), on the cavity wall (incident col-
lisions followed by trapping and desorption) and in the gas phase (gravitational
scattering or thermalizing collisions). The net impulse on the gravitator at rest
(Figure 6.1a) or in rectilinear motion was calculated from conservation of linear
momentum; the net torque on the gravitator in synchronous rotation (Figure 6.1b)
was calculated via conservation of angular momentum.

Over a wide range of physically realistic parameters (1 < my < 10 amuy;
4 < my(j) <200 amu; 2.73 K< T < 2 x 10* K; 10° m< rg < 1.6 x 10° m; 2 x 105
m< r, < 6 x 10° m; 3 x 10! kg< mg < 10** kg; —120 m/s< viangentiar < 120
m/s; Negy < 2 X 1012 m*3), numerical simulations indicated that significant net
forces were maintained on the gravitator — either at rest or in motion — as a
result of asymmetric trapping (thermalization) probabilities on S1 and S2. Under
all circumstances tested, the force was reversed in direction by reversing S1 and
S2 surface parameters; the effect was lost when S1 and S2 were symmetrized.
For the standard gravitator, steady-state, non-zero torques were maintained up to
gravitator speeds of roughly 5% of the gas thermal speed — this represents the
gravitator’s ‘terminal velocity.” (The standard gravitator was not optimized for
power output, but is merely representative.) Outside the regime circumscribed by
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Figure 6.5: Net y-force on symmetric and asymmetric standard gravitator versus
gravitator mass. Gravitator centered and at rest as in Figure la. (30,000 - 65,000
atom collisions per simulation; 1.4, = 5 x 101%m=3.)

the constraints (o — {) forces (and torques) declined to values within the range of
the numerical fluctuations; that is, the challenge was lifted. On the other hand,
within the viability regime, the effect was lifted only by the most contrived (e.g.
symmetrical) choices for S1 and S2 parameters.

In Figure 6.5 is plotted the net y-force exerted on the standard gravitator by
all atoms in the cavity (Neqy = 37(rd — rd)ncqw) versus gravitator mass. (It is

3
assumed that all gas atoms behave on average like the test atom. This is sup-
ported by its previously demonstrated ergodic behavior (Figure 6.4).) Gravitator

mass can be expressed (in units of kT) in terms of the gravitational potential
Gma(re—rg)

energy of a gas atom at the wall ((P.E.)yau[mea] = meq); for ref-

TeTG
erence, (P.E.)yan[2 x 10%kg] = kT. Three cases are shown: two asymmetric
ms(l) _ 7 ms(1) _ 96 i ms(l) 96 _
M@ = 96amu’ m.(2) = 7ams and one symmetric Ty = g = 1. The

symmetric case shows little net force while the two asymmetric cases display sig-
nificant net y-forces and are mirror images of each other within the limits of the
noise. Both at low values of mg (investigated down to 10'2 kg = 5 x 10713 kT
in (P.E.)yway) and at high values (investigated up to 2 x 10%° kg = 100 kT in
(P.E.)yau) the net y-force is small. At low values of m¢, gas-surface collisions are
nearly thermal so S1 and S2 behave nearly identically and little force is seen, or
expected. At high values of m¢g the gas collisions may be suprathermal, but the
gas is held so near the gravitator that it is unable to reach, thermalize and recycle
on the cavity walls — again the paradox is lifted. Only in the midrange values
(1023 kg < mg < 10* kg, or 0.25kT < (P.E.)way < 4kT) are the gas-surface
collisions appreciably suprathermal and are gas atoms readily able to cycle be-
tween the gravitator and walls. It is here that the challenge is most evident. The
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Figure 6.6: Net z-torque on symmetric and asymmetric synchronously rotating
standard gravitator versus gravitator tangential speed. System attractors indicated
by arrows. (25,000 - 50,000 collisions per simulation; neq, = 10?m=3; r4 =
5x 107 m)

maximum net y-force for the asymmetric cases is roughly 13% of the total y-force
exerted by all gas-surface collisions to a single hemisphere, in rough agreement
with previous theoretical predictions (~ 25%). At their maxima (mg ~ 3 x 10?3
kg, (P.E.)yau ~ 1.5kT), the net y-forces are about 10 times larger than either the
rms net y-force for the symmetrical case or for the net x- and z-forces for either
symmetric or asymmetric cases. The relative sizes of fluctuations in numerically
calculated dynamical quantities (for example, in the net linear and angular x-,y-,
and z-momenta) scaled inversely with the number of gas-gravitator collisions
(Neou) in a run, scaling roughly as expected, that is, approximately as N ;ll/ 3

In Figure 6.6 is plotted the net z-torque exerted on the synchronously rotating
standard gravitator (Figure 6.1b) by all gas atoms in the cavity versus the tan-

gential speed of the gravitator. For reference, 100 m/s is roughly 0.05v¢,. The

ms(1) _ 96(1,mu)
ms(2) — 96amu

demonstrates the torque due to gas drag as the gravitator plows through the cavity
gas. The arrows near the data line point to the attractor for the symmetric case
(the origin); that is; regardless of its initial viangentiai, gas drag torque will even-
tually slow the gravitator to rest. As viangential @pproaches about 0.20 vy, the
symmetric case line meets the respective asymmetric case lines for which the 96

same three cases are shown as in Figure 6.5. The symmetric case (
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Figure 6.7: Power output from synchronously rotating standard gravitator versus

angular velocity for case Z—g; = 976;%. (25,000 - 50,000 collisions per simulation;

Neaw = 1012m™3; 74 = 5 x 10~ m)

amu hemisphere faces a headwind. Presumably, this is because, as the gravitator
reaches an appreciable fraction of vy, the composition of the leading hemisphere
increasingly determines the dynamics of the gravitator.

ms(1) _ Tamu and ms(l) _ 96amu)

ms(2) — 96amu mg(2) Tamu
are at Vigngential =~ £120 m/sec. This means the gravitator will move at this

tangential speed stably and indefinitely, making it a perpetuum mobile of the third
kind. On the other hand, if, beyond the torques due to gas drag and asymmetric
trapping, an appropriate additional torque is added to the system — say, the torque
of an electrical generator located at the axis of rotation — then the gravitator can
reside stably and indefinitely at any point along the solid data lines in the first and
third quadrants of Figure 6.6. Here, the gravitator can exert a steady-state torque
on the generator while maintaining a steady-state angular velocity. Taking 7jcye, as
the lever arm (the distance from the gravitator’s center to the center of the cavity),
if one plots the product P = 7 - W = 7 - w versus w, one can establish the
output power curve for the gravitator/ generator, as shown in Figure 6.7 for the case

ma() _ 96amu i e first quadrant of Figure 6.6. At either w = 0 rad/s or at the

ms(2) Tamu

terminal angular velocity (Wierminar = 7-5 x 107° rad/s) the gravitator/generator
produces no power, but for 0 < w < Wierminal, the steady-state power output is
non-zero and positive, maximizing at P(w ~ 3.8 x 10~°rad/s)~ 1.9 x 10¢ W. A

The attractors for the asymmetric cases (
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Figure 6.8: Variation of mean free path (A), number of gas phase collisions (gpc)
and the magnitude of the net y-impulse to standard gravitator by test atom versus

cavity number density, neqy- (ms(l) = Jamu . 90 000 collisions per simulation)

me(2) 96amu’

more realistic estimate also incorporates the counter-torque due to the Doppler-
shifted blackbody radiation field. When this is considered, then, at its power
maximum (w ~ 3 x 1076 rad/s or Utangential ™ £5 m/sec) the standard gravitator
in Figure 6.6 should generate via the generator about 1.6 x 10°> W in steady-state
power. This is forbidden; this is a perpetuum mobile of the second kind.

System behavior is strongly dependent on the gas phase number density and
boundary conditions. In Figure 6.8 are coplotted the theoretical gas mean free path
(A), the number of gas phase collisions (gpc) and the net y-impulse to the gravitator
by the test atom versus the cavity gas number density, n.q.,. As expected, as
the mean free path becomes comparable to the scale lengths of the cavity and
gravitator (A ~ rg, 7. at roughly n.q, ~ 102 m~3), simultaneously the number of
gas phase collisions rapidly increases while the net impulse to the gravitator rapidly
decreases, signaling the collapse of the paradoxical effect. (Gas-gravitator and
gas-wall collisions also undergo rapid decreases at n.q, ~ 1012 m~3.) The collapse
occurs occurs because thermalizing gas phase collisions reduce the suprathermicity
of gas-surface collisions.

The cavity walls play as integral a role to the paradox as does the gravitator
itself since it is the walls: i) that act as a reference point for the application of
conservation of linear and angular momenta to the gas influxes and effluxes; ii)
where gas is rethermalized and recycled for its return to the gravitator; and iii)
where the gravitator makes corporeal connection with the universal heat bath via
the gas. In other words, were the gravitator simply in free space — that is, were
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Figure 6.9: Magnitude of net y-impulse imparted to standard gravitator by test
atom versus cavity radius. (65,000 collisions per simulation)

the cavity walls absent — conservation of momentum dictates that there could be
no net force (or torque) applied to the gravitator by the gas — and there would be
no paradox. Simulations corroborate this: in Figure 6.9 is plotted the magnitude
of the net y-impulse imparted to the gravitator (Figure 6.1a) by the test atom
versus radius of the cavity for the case Zgg = 97(3‘27:’&. (The vertical dotted line
indicates the radius of the gravitator and the horizontal dotted line represents the
average magnitude of numerical noise for the x and z components of net impulse.)
As evidenced in Figure 6.9, the impulse decreases with increased cavity radius. In
the limit r. — oo, presumably the net y-impulse would decline into the noise —
the expected free space value. This critical role of boundary conditions is typical
for non-extensive systems [10].

In summary, three-dimensional numerical simulations qualitatively and quan-
titatively support the challenge to the second law.

6.2.5 Wheeler Resolution

Recently, J.C. Wheeler raised a serious objection against this model (§6.2) [27]; it
is not yet clear whether it resolves the paradox. If it does, then inasmuch as the
gravitator is closely related to the several other USD challenges (Chapters 6-9), this
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objection might lead to a resolution of the entire group?. Wheeler demonstrates
analytically and via numerical simulations that the one-dimensional distribution
used by Sheehan (Figure 6.2) is spurious because it is not correctly weighted by
velocity. He shows that a 1-D Maxwellian in a gravitational field will retain its
form when correctly weighted by velocity so as to reflect particle flux. In this case,
distribution f; and f; should be the same for either hemisphere.

Wheeler goes on to argue that the 1-D distribution can be extended to 3-D and,
via Liouville’s theorem, the full velocity distributions (arriving at) and (departing
from) the gravitator are the same for both hemispheres. By symmetry, then,
there is no net force on the gravitator and, thus, the paradox is resolved. No 3-D
numerical simulations were conducted to substantiate this claim.

Wheeler’s 1-D argument appears sound; however, the 3-D argument, while su-
perficially convincing, is circular. Liouville’s theorem, conservation of phase space
density, is not valid for systems evolving in a nonequilibrium fashion®. Further-
more, 1-D arguments cannot be automatically and legitimately extended to 3-D
since the second law has different status in different dimensions. For instance, it is
well known that the second law is violable in 1-D [28], but these violations do not
extend to the 3-D cases. Likewise, there is no a priori reason to believe that a 1-D
resolution will naturally extend to the 3-D case; in fact, there are good reasons
to believe this one does not. In particular, in attempting to extend from 1-D to
3-D, Wheeler’s analysis does not appreciate the fundamental differences between
elastic and inelastic suprathermal atomic collisions. An atom that thermalizes
instantaneously loses information about its initial conditions, while one that scat-
ters elastically does not. Atoms falling suprathermally onto the hemisphere lose
information (increase in entropy) if they thermalize; this is not the case if they
scatter elastically or if they were thermal to begin with. S1 and S2 are thermo-
dynamically distinct; in particular, entropy generation is greater on the inelastic
side. Moreover, the Wheeler argument does not properly consider the possibility of
net particle transport around the hemisphere or the walls of the cavity by surface
hopping.

In summary, Wheeler has made an important contribution to understanding
the gravitator paradox in one dimension. Unfortunately, the argument does not
appear to have been properly extended to three dimensions. Perhaps a more per-
suasive argument can be devised. Meanwhile, numerical simulations, independent
of Sheehan, et al., should be conducted to settle the issue.

6.2.6 Laboratory Experiments [13, 14]

Full three-dimensional analytic expressions for system behaviors are infeasible —
after all, even closed-form descriptions of the simpler case of an atmosphere around
a spherically symmetric planet without cavity walls are not known — however, 3-D
numerical simulations are straightforward and, presumably, accurate. Clearly, full
scale experiments of this gravitational system are also infeasible into the forseeable

2This would be ironic since Sheehan originally proposed the gravitator somewhat as a joke.
3Increasing system entropy corresponds to increasing phase space volume visited, and de-
creasing entropy to decreasing phase space volume.
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Figure 6.10: Schematic of torsion balance experiment.

future; however, each of the individual underlying physical processes are well-
founded and experimentally testable.

A central physical process underlying this challenge is the surface-specific,
nonequilibrium suprathermal gas-surface impacts. Their nonequilibrium nature
is not doubted theoretically and is documented extensively in the chemical and
surface science literature (see references in [23, 24]); it is also amply demonstrated
by the ubiquitous examples of gaseous heat convection, upon which countless nat-
ural and technological processes rely. In fact, virtually any process in which a gas
changes temperature through contact with a surface is an example of a nonequi-
librium gas-surface interaction. It is difficult, however, to cite specific examples of
two or more distinct surfaces exposed to a single suprathermal gas type in which
the surfaces display different inelasticities (i.e. different degrees of momentum
transfer with the gas). In theory they can be different (See (1)), but definitive
experimental examples have only recently been demonstrated.

High-vacuum torsion balance experiments were conducted in which low-density
(i.e. long mean free path), thermal and suprathermal noble gas beams (He and
Ar) were directed normally against various target surfaces (metals (Al, W, steel),
inorganics (borosilicate glass plate, fiberglass), and organics (acrylate and hydro-
carbon films)) that were affixed to the vanes of the torsion balance (Figure 6.10).
Gas beam temperatures could be varied continuously from roughly T = 293K (for
thermal beams) up to T = 1215K (for suprathermal beams) and were collided on
T= 293 K target surfaces on the torsion balance vanes. Surfaces were exposed at
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either 0 or 45 degrees with respect to beam normal incidence. Argon and helium
were chosen as the impact gases since they are chemically inert and monatomic,
thereby avoiding the theoretical and experimental intricacies of impact-induced vi-
brational and rotational modes of the gas and of chemical reactions with the target
surfaces. At the suprathermal energies explored, impact energies were well below
thresholds for chemical reactions, ionization or sputtering. From the deflection of
the torsion balance, which was calibrated, the momentum flux transfer from the
gas to the surface could be established with high precision and accuracy, and from
this the degree of inelasticity of gas-surface collisions could be determined.

The torsion balance, consisting of thin glass vanes (21 mm square) overlayed
with target surfaces attached to a solid copper disc base, was suspended by a 53.4
cm long, 51 micron diameter tungsten torsion fiber over a permanent disc magnet
(for magnetic damping of oscillations). This assembly was housed in a 1.12 m tall,
vertically aligned, cylindrical 304 stainless steel vacuum vessel (8 x 107 torr base
pressure, oil diffusion pumped). The fiber’s torsion constant (k) — determined via
the balances oscillation period (7), given its moment of inertia (I) — agreed with
theoretical prediction to within 3 % (k ~ (22)2I = 1.80 x 1077 ki—’f)

Test gases were delivered to the target surfaces via a flow-calibrated gas reser-
voir system through an open-ended 10 cm long, 0.5 cm diameter cylindrical,
ohmically-heated stainless steel blackbody cavity with a centrally-located opaque
iron wool diffuser. A type K thermocouple buried in the cavity measured cavity
temperatures. Optical pyrometry corroborated thermocouple readings and verified
spatial uniformity of temperature with the blackbody cavity. Test gas atoms were
estimated to undergo roughly 100 wall surface collisions within the blackbody cav-
ity and so were assumed to be in equilibrium with it upon exiting. Target surfaces
were situated a distance d = 10 cm directly in front of the exit of the blackbody
cavity. The gas mean free path of gas in the beams was longer than d.

Gas temperatures were continuously variable from 293-1215 K and could be
maintained within 3K ( well within the 1 % precision of type K thermocou-
ples) during measurements. Gas flow rate through the blackbody cavity as in-
ferred quantitatively (to better than 1%) by monitoring the emptying rate of the
fixed volume, isothermal gas reservoir, as established by a capacitance manometer
gauge.

Momentum transfer was inferred from the deflection of the torsion balance
when exposed to a specific flux of gas atom at a particular temperature. Deflection
was inferred from laser reflection from a mirrored side of the balance. Minimum
discernable deflections were 2 x 10~ radians corresponding to net average torques
about the balance’s axis, forces, and pressures on the vanes of 5 x 107! Nm,
3 x 1072 N, and 5 x 1079 Pa, respectively.

Since the experiments were conducted at only high-vacuum (~ 10~ Torr), all
surfaces were eventually covered with the same multilayers of residual air, oxides,
water, vacuum pump oil, and other standard vacuum contaminants. As might be
expected because of similar vacuum surface contaminants, most surfaces behaved
similarly with respect to a particular gas — with one exception. In comparing mo-
mentum transfer between fiberglass and plate glass it was found that suprathermal
He beams transferred up to roughly 15% greater momentum flux density to the
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plate glass than to the fiberglass at high beam temperatures. The semi-elasticity
of the He-glass impacts is supported by the magnitude of the torsion balance de-
flections. In other words, a greater net pressure was exerted by the He beam on
the plate glass than on the fiberglass. On the other hand, for beams at the same
temperature as the surfaces, no significant difference in momentum flux density
between the two surface types could be inferred. The most reasonable explanation
for this is that average collisions of He atoms with a surface are neither fully elastic
or inelastic (similarly as to collisions of macroscopic objects), so, whereas on aver-
age a gas atom will transfer a fixed amount of momentum during a single collision,
with the flat plate glass an atom interacts only once with the surface before leaving
and so rebounds not nearly thermalized (i.e. T > 300K), while with the fiberglass
the gas atom can can become trapped in the matrix, undergo multiple collisions
and, therefore, can be more nearly thermal (i.e. T > 300K) when it leaves. In
this case, one would expect more momentum to be transferred to the plate glass
than to the fiberglass despite the fact that both surfaces are identical chemically.
Experimentally, this was observed. It is also noteworthy that one would expect
the torsion balance deflection to be the same for both surface types for thermal
(T = 300K) gas beams. Again, this was observed experimentally.

These experiments corroborate a central physical process involved in the chal-
lenge, namely, the different nonequilibrium character of two surfaces with respect
to suprathermal gas impacts. In this case, the difference was not due to chemi-
cal differences, but due to the morphological differences between the surfaces. (In
principle then, one might use plate glass for S1 and fiberglass for S2 and the cavity
walls.) The choices of gas, surface type, and temperatures used in the experiments
model well several of the parameters presented in the standard model. In strictly
applying these results to the paradox, however, a number of caveats must be made,
chief among them being: (1) that the gravitationally-induced, drifting, cool half-
Maxwellian suprathermal beams in the paradox behave comparably to the non-
drifting, hot, half-Maxwellian suprathermal beams studied in the experiment; (2)
that this behavior will be maintained in a closed, blackbody cavity environment;
and (3) that the asymmetry observed experimentally for normal gas-surface colli-
sions also apply to non-normal incident collisions. More sophisticated experiments
can be imagined.

In this section several strands of evidence have been woven together in support
of a classical mechanical gravitational challenge — analytic arguments, numerical
simulations, laboratory experiments — and these mutually support the hypothesis
of the challenge. However, none of these strands alone seems able to bear the full
burden of proof; in fact, even together they cannot bear this burden because the
second law, like all physical laws, is ultimately contingent on empirical verification;
and likewise, any purported violation is also contingent. Since it cannot be tested
with a full-scale experiment within the foreseeable future, this particular challenge
is at most a thought experiment. Its value rests in challenging the common belief
that possibilities for classical second law challenges are exhausted and also in its
pointing the way to other more cogent and experimentally-testable challenges.
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6.3 Loschmidt Gravito-Thermal Effect

The most celebrated gravitational second law challenge revolves around an
unresolved dispute between Josef Loschmidt and the two thermodynamic giants,
Maxwell and Boltzmann. Loschmidt claimed that the equilibrium temperature
of a gas column subject to gravity should be lower at the top of the column
and higher at its base [17, 18]. Presumably, one could drive a heat engine with
this temperature gradient, thus violating the second law. (Loschmidt’s original
proposal was for solids, but it can be extended to gases and liquids.) This debate
has remained unresolved for over a century. In the last several years, the question
has been resurrected by Andreas Trupp [29] and has been explored experimentally
by Roderich Graff [30].

Loschmidt’s rationale for a gravitational temperature gradient is straightfor-
ward. Consider a vertical column of gas in a uniform gravitational field (accelera-
tion g) of height (2 = h). Gas molecules (mass, m) at the top of the column possess
mgh greater gravitational potential energy than molecules at the base. Thermal
motion with (against) the direction of the field increases (decreases) molecular
kinetic energy. This net kinetic energy can be transferred from the top to the
bottom of the column via collisions. No net particle flow from top to bottom is re-
quired since energy transfer is mediated by collision; thus, this is heat conduction,
not convection. If this gravitationally directed motion is eventually thermalized,
one can write from the first law: mgz = C,mAT, where C, is the specific heat of
the gas at constant volume (Trupp notes that C, should be replaced by C, [29]).
From this, a vertical temperature gradient can be intuited:

dT’ g

Fei V. T = c. (6.4)
For a typical gas (e.g., No) with C,,(N2) ~ 1100J /kgK, in the Earth’s gravitational
field, one estimates V,T ~ 1072K/m. This is nearly the well-known standard
meteorological adiabatic gradient, where C), replaces C,. It is claimed that, in
principle, this temperature gradient can be used to drive a heat engine, thereby
violating the second law.

The Loschmidt effect was never definitively refuted either by Maxwell or Boltz-
mann. Maxwell disbelieved it, apparently without mounting a formal proof; rather
he appealed to the second law itself [31]. Boltzmann, on the other hand, repeatedly
attempted microscopic counterproofs, but was not definitively successful [32, 33].
A review of this debate is given by Trupp [29], who adds his own commentary and
analysis. Surprisingly, an experimental measurement of this effect has not been
attempted until recently [30].

Loschmidt’s argument skates over many crucial thermodynamic and statistical
mechanical issues, including:

A) Radiation and convective heat transport, which would counter the conductive
energy transport and erase the temperature gradient, are ignored. Heat transport
rate is not addressed since (6.4) is derived from equilibrium consideration.

B) The argument ignores microscopic modifications to the gas velocity distribu-
tion as it ascends and descends in the field. Notably, it neglects the upwardly



Chapter 6: Gravitational Challenges 203

flowing, low-velocity particles which are turned back before they can ascend to
collide with the molecules above. Sheehan, et al. argue that these are critical
to kinetic energy transport in gravitational fields [13-16]; meanwhile, Wheeler ar-
gues there should be no net transport at all [27]. Specifically, while Loschmidt
and Sheehan agree that there should be spontaneous vertical energy transport in
the gas column, they fundamentally disagree on its direction. Loschmidt argues
that energy flows downward, while Sheehan claims the net energy flow is upward.
Loschmidt applies energy conservation and assumes equilibrium everywhere, while
Sheehan examines the full velocity distribution (f(v.)) both analytically and with
numerical simulations.

Maxwell’s opinion on the Loschmidt effect is the general scientific consensus:
that the gas column’s temperature must be independent of height [34, 35]. Most
proofs can be shown either to analyse the problem incompletely, such as to reach
second law compliance before the true problem arises, or else the proof makes ad
hoc assumptions that deliver the desired result. A good example can be found in
Walton [35], where explicit assumptions of equilibrium are made in the derivation
of f(v.) (See (12) in [35]). Not surprisingly, this delivers the Maxwell distribution
at all altitudes. Unfortunately, it hides the true development of f(v,). Trupp [29]
considers Garrod’s derivation [34].

6.3.1 Graff Experiments

R.W. Gréff has conducted roughly 50 individual experiments with the goal of
putting quantitative limits on the magnitude of the Loschmidt effect [17, 18].
Laboratories in Ithaca (US) and Koénigsfeld (Germany) simultaneously conduct
multiple experiments [30].

Samples in which the Loschmidt effect has been sought include solids (Pb, Fe),
liquids (water, oil, carbonated aqueous solutions with dissolved salts and organ-
ics), and gases (air, Xe, Ar) at various pressures (10~* — 10° Torr). Test sam-
ples were vertically-aligned long cylinders (aspect ratios 5-10:1) with scale lengths
0.15-0.5m. Temperatures were measured by Type E (Chromomega-Constantan)
thermocouples (0.005” dia) situated at various positions in the sample and on the
exteriors of its surrounding, nested heat shields. Five thermocouples were strung
vertically in series to form a five-leg thermopiles, with the upper and lower termi-
nals taking differential temperature readings (rather than absolute temperature)
over 10-20cm heights. Differential temperatures were measured in an attempt to
sidestep the thermocouple precision-accuracy limit (so-called limit of error [37])
on absolute temperature measurements and also because differential temperatures
are sufficient to establish the effect. Voltages were measured to #1077V preci-
sion, corresponding to =AT ~ 3 x 10~*K, but the precision claimed by Graff was
only AT = 2 x 1073K. Type E thermocouple has a ANSI-rated limit of error of
+1%, suggesting that for absolute temperature measurements at 7' = 300K, one
has £ AT = 3K. This over a thousand times worse than the precision claimed by
Gréff for differential temperature; however, it is unclear how ANSI specifications
apply to differential temperature measurements.

Because the magnitude of the Loschmidt effect is small, the primary experi-
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mental challenges involved thermal isolation, uniformity, and stability. Samples
were carefully isolated in a nested series of thermal shields and thermal equalizers.
Shields consisted of low thermal conductivity layers like styrofoam, plastic wool,
plastic fibers, and mirrored glass vacuum dewars. Thermal equalizers were layers
of high thermal conductivity materials like iron, aluminum and copper. It can
be shown from elementary heat transport theory that the proper alternating of
high and low conductivity layers can achieve high degrees of thermal isolation,
uniformity, and stability.

In the most sophisticated experiments, small scale thermal inhomogeneities
were smoothed by rotating the outer heat shields around the inner shields on
timescales much shorter than the system thermal relaxation time (10s ~ T, <
Tretaz ~ 10% —105s). The Loschmidt effect itself is expected to stratify liquids and
gas up to their adiabatic convective instability limit in meterology, whereas small
scale convection in the sample core could destroy the thermal stratification being
sought; therefore, attempts were made to inhibit convection by loading the gas or
liquid sample in a matrix of plastic fibers or glass microspheres (r~ 5um). The
volume fraction of liquid to microspheres were roughly 0.4:0.6.

Experiments were conducted in rooms with low levels of vibrations, small sea-
sonal temperature variations (ATseqs0n =~ £2K), and minimal vertical temperature
stratification between ceiling and floor (ATye,+ ~ 1K). Experimental runs lasted
up to six months each, allowing an apparatus to relax thermally and manifest long-
term trends. Typical relaxation times for the core was estimate to be 2 x 10%s,
while for the entire apparatus, typically 2 x 10°s.

Graff’s experimental results support the existence of Loschmidt’s gravito-thermal
effect in gases and liquids, but are inconclusive in solids, the phase for which
Loschmidt made his original proposal. The most sophisticated long-term ex-
periments reported average vertical temperature gradients of (‘fl—f)air Jexp = T X
1072K/m for air and (%) yater/erp = 4 x 1072K/m for water (with glass mi-
crospheres), cold at the top and warm at the bottom of the sample columns.
Experiment results agree qualitatively with the theoretical estimated tempera-
ture gradients from (1) of (%)air/thmw =9 x 1073K/m and (%)watar/thmry =
2 x 107°K/m. In a recent series of aqueous experiments, the core sample was
physically flipped vertically top to bottom up to ten times on time scales of 6-36
hours. The temperature gradient was observed to re-establish itself between flips.

The water /microsphere sample demonstrates a peristent negative temperature
gradient while the outer heat shield shows the inverse. The averaging process
supresses large, short-term variations in the data (signal-to-noise ratio of order
unity). (Controls with the samples held horizontally or at intermediate angles
with respect to vertical were not conducted.)

Long-term average voltage (temperature) gradients were unmistakable, how-
ever, for all experiments, the signal-to-noise ratios were of order unity, raising the
question whether the positive results were the Loschmidt effect or a systematic
error. In support of the effect, while the core samples showed persistent nega-
tive temperature gradients (cold at top, warm at bottom), the measurements on
the heat shields directly surrounding the core consistently exhibited oppositely-
directed, positive temperature gradients of greater magnitude. It is difficult to
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explain this reversal of vertical temperature gradients from inside to outside the
apparatus. Aside from the Loschmidt effect, no alternative physical explanation
for these results has been advanced.

Arguments against the effect and in favor of systematic error include:
a) The magnitude of the experimental temperature gradients are roughly a factor of
10 larger than theoretical estimates. (It is expected that the temperature gradients
should relax somewhat via conduction, convection, and radiation, thus should be
less than theoretical estimates, rather than greater.)
b) The data’s signal-to-noise ratio is of order unity, but the origin of this noise has
not been identified. The impact of 1% limit of error for Type E thermocouple on
these differential temperature measurements has not been adequately assessed and
it is unclear whether the Loschmidt signal can be extracted from noise, even in
principle. Adequate control experiments (e.g., varying inclination angle of sample)
have not been conducted.
¢) Straightforward application of Loschmidt’s arguments predict that all material
phases (solid, liquid, gas) should exhibit the gravito-thermal effect. While the
effect is supported in gases and liquids, it is not yet supported in solids. Graff
notes that experiments with solids thus far have not been as extensive as those in
gases and liquids, and more are planned.

The minuteness of the temperature gradient in realistic laboratory settings
poses a significant experimental impediment, as can be inferred from Gréaff’s results
[30]. Trupp suggests this difficulty might be overcome by exploring centripetally
accelerated systems [36]. Einstein’s equivalence principle allows substitution of
the centripetal acceleration (a. = rw?) for gravity in (6.4) and state-of-the-art
centrifuges can deliver accelerations in excess of 5 x 10°¢’s, one expects commen-
surately larger temperature gradients than in terrestrial fields.

Consider a centrifuge rotating at angular velocity w. Substituting the cen-

tripetal acceleration for gravity in (6.4), one obtains the temperature gradient,

2 . . ..
‘fl—f = & and an integrated temperature difference between two radii (r;, and
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! 2C,

(Tgut - r?n) (65)

Letting r;, = 0 and using specifications for commercial ultracentrifuges (rou: ~
107'm, a. ~ 5x10%m/s?), the predicted AT for Ar gas radially across a 10cm tube
should be AT ~ 700K — in principle, an easily measurable temperature difference.
Of course, ultracentrufuges bring a new set of experimental hurdles, including:
thermometry and thermal insulation in small, rotating systems; vibration-induced
gas convection; and aerodynamic heating of the sample tube. Considering the
experimental difficulties experienced by Graff, Trupp’s proposal seems reasonable.

In summary, Graff’s experiments are not yet conclusive and their theoretical
underpinnings are disputed by other researchers. Nevertheless, his are the first
to test and to support the Loschmidt effect. They deserve serious attention, and
ideally, they should be replicated at independent laboratories.
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6.3.2 Trupp Experiments

It is natural to attempt to extend the Loschmidt mechanism to gases in other
force fields. One obvious application is to evaporation from liquids. Molecules in
a liquid are loosely bound to each other, most often by van der Waals forces, ionic
or hydrogen bonds [38]. On average in the bulk liquid, these forces cancel, but at
the liquid surface they do not. Rather, there is a net force into the liquid — in
the case of van der Waals forces, sizably extending out several angstroms — that
inhibits evaporation.

Trupp proposes that the forces at the gas-liquid interface act as a highly com-
pressed version of the gravitational field and should, via the Loschmidt mechanism,
give rise to a temperature difference between the vapor and liquid phase of suit-
able solutions [39]. In particular, he predicts that the vapor over a superheated
liquid can be significantly cooler than the liquid itself. In principle, this temper-
ature difference could drive a Sterling engine or a heat pump having no moving
parts. Trupp cites multiple experimental studies from the 19*" century that ap-
pear to support this temperature difference [39, 40, 41]. For concentrated aqueous
solutions of ionic salts (e.g., aqueous solution of CaCly) vapor-liquid temperature
differences in excess of 40°C have been claimed [42].

Experimental subtleties make clean measurements of this temperature gradi-
ent more difficult than expected, such that it is still questionable. Experiments
of boiling liquids thus far, that indicate temperature gradients, have continuously
vented vapor from the confining vessel to the environment; this is required to
maintain boiling. Ideally, the liquid and vapor should be held together in a single,
sealed vessel, surrounded by an isothermal heat bath. A steady-state temperature
gradient under these conditions would be more convincing. (Thermal conduc-
tion between the vapor and the walls must be considered carefully in this case.)
Additional experimental uncertainty stems from the thermodynamics of contact
between the vapor and thermometer. For example, if vapor condenses on a ther-
mometer, it not only releases its latent heat, it also forms a layer of pure liquid
unlike the concentrated solution from which it originated, thereby confounding
measurements.

Modern non-invasive thermometry should be able to settle this issue. For in-
stance, laser induced fluorescence temperature measurements of gases are possible,
using narrow-band, tunable lasers to scan the gas’ thermally-Doppler-shifted ve-
locity distributions. This non-perturbing technique has been successfully applied
to ions in low-temperature plasmas [43] and should be able to give detailed velocity
distributions for vapors from which their temperatures can be inferred.

In summary, the generalized Loschmidt effect applied to evaporation is suspect,
but it merits additional theoretical and experimental investigation.
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7

Chemical Nonequilibrium
Steady States

Differential rates of gas-surface reactions under low-pressure blackbody cavity
conditions can undermine common notions of detailed balance and, by suitable
construction, challenge the second law. Laboratory experiments involving low-
pressure hydrogen reactions on high-temperature refractory metal surfaces cor-
roborate these claims.

7.1 Introduction

In this chapter the theory and experimental details of a laboratory-testable
challenge to the second law based on heterogenous gas-surface reactions are devel-
oped [1, 2, 3]. Theory is developed from the general constraints of detailed balance
and then for more specific conditions using primitive rate equations. Experimental
support for this effect is presented and prospects for more definitive experiments
are discussed.

Under sealed blackbody cavity conditions, gas pressure gradients commonly
take three forms: (a) statistical fluctuations; (b) transients associated with the
relaxation toward equilibrium; and (c) equilibrium pressure gradients associated
with potential gradients (such as with gravity). In the low-density (collisionless)
regime, a fourth type of pressure gradient can also arise, this due to steady-state
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differential thermal desorption of surface species from chemically active surfaces.
This gas phase is inherently nonequilibrium in character and can lead to steady-
state pressure gradients that can be exploited to perform work solely at the expense
of heat from a heat bath, in violation of the second law.

It is considered almost axiomatic that gas phase equilibrium under blackbody
cavity conditions is: i) unique; ii) solely determined by chemical species type, tem-
perature, and number density; and iii) independent of the chemical composition of
the cavity walls. The gas phase equilibrium constant K (g) is simply a function of
temperature 7' and the Gibbs free energy of the reaction [4]: K(g) = exp[—25].
This can be argued forcefully theoretically and also experimentally by appealing
to countless examples. This ‘axiom,” however, tacitly assumes that gas phase
collisions are sufficiently frequent so as to establish equilibrium without account
of gas-surface reactions. Under most everyday circumstances, this assumption is
valid. For instance, air molecules at STP have a mean free path of A ~ 5 x 10~®m
and a collision frequency of v ~ 10'%sec™!; therefore, regardless of what specific
chemical reactions may occur at a boundary surface, standard gas phase equilib-
rium (hereafter, SGPE) is established on very short time and distance scales from
any boundary. Furthermore, surfaces typically have sufficient adsorbate coverages
to mask gas-surface reactions that might otherwise be manifest.

However, when gas phase collisions are rare compared with gas-surface colli-
sions, SGPE cannot be taken for granted and serious account must be taken of
chemical reactions of the gas with the confining walls. In the low pressure regime
where surface coverages are low (perhaps less than a monolayer) and surface effects
are important, where gas phase collisions are rare compared with gas-surface colli-
sions, a novel steady-state nonequilibrium gas phase can arise which depends pri-
marily on gas-surface reactions, rather than on gas-phase reactions; this results in
a dynamically-maintained, steady-state pressure gradient (hereafter, DSPG). The
DSPG involves two coupled steady-state chemical nonequilibria. Numerical sim-
ulations, starting from the primitive rate relations for species concentrations and
using realistic physical parameters, support these phenomena and indicate they
should be observable in the laboratory. Corroborative laboratory experiments also
support this hypothesis [2].

The DSPG represents a new type of pressure gradient. It appears in physical
regimes that have not been explored carefully either theoretically or experimen-
tally. Numerous gas-surface interaction studies have been performed, but most
of these have been carried out i) at relatively high pressures where standard gas
phase equilibrium can be assumed or where sub-monolayer surface coverages can-
not be assumed; or ii) in a geometry which does not approximate a blackbody; or
iii) where only a single chemically-active surface is involved.

In this chapter, the DSPG will be derived from two perspectives: (i) from the
principle of detailed balance, and (ii) from reaction rate theory in the low-gas-
pressure and low-surface-coverage regime. In the latter, realistic physical parame-
ters are applied, indicating that the DSPG should be both robust and laboratory-
testable. Once the DSPG is established, it is only a minor extension to a second
law challenge [3].

The physical origin of the DSPG is straightforward. Consider two surfaces, S1
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Figure 7.1: Duncan’s radiometer. Force from dynamically-maintained, steady-
state pressure gradient (DSPG) between S1 and S2 raises weight, M.

and S2, which have different chemical activities with respect to the dissociation
of diatomic gas (2A = Aj) in that, under identical temperatures and pressures,
S1 dissociates A; and desorbs A more effectively than S2. Since, at a single
temperature, the thermal velocity of A is v/2 greater than that of As, if the gaseous
influxes onto S1 and S2 are the same and if all effluxing species leave in thermal
equilibrium with S1 and S2, then conservation of linear momentum demands that
a greater pressure is exerted on S1 than on S2. This pressure difference implies
the DSPG.

If the DSPG obtains, then a simple geometric rearrangement can bring it into
a form which challenges the second law. Such proposals date back to the early
1990’s, but were most clearly enunciated in 1998 by Duncan [3] who proposed
a simple radiometer-style second law violator in which S1 and S2 pave alternate
faces of turbine was housed in a blackbody cavity surfaced with S2 and housing
A, and A gas (Figure 7.1). The DSPG operates across the vane faces, creating
a steady-state pressure differential on par with the average gas pressure in the
cavity. This is used to lift a weight or run an electrical generator continuously.
Since this is a nonequilibrium steady state (NESS), the standard NESS literature
could be illuminating (§1.4).
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BBC (1) BBC (1)

BBC (2) BBC (2)

(2) (b) (c)

Figure 7.2: Blackbody cavities for establishment of DSPG: (a) separate BBC(1)
and BBC(2); (b) Cavities joined by small hole; (c¢) Single cavity with S1 and S2
surface types; S2 dominates cavity reactions.

7.2 Chemical Paradox and Detailed Balance

Nomenclature from [1] will be used. The initial i refers to surface type, j
to chemical species; subscripts ads, des, diss, and recomb refer to the processes
of adsorption, desorption, dissociation, and recombination of atomic or molecular
species (e.g., Rqds(t, Aj) = Raqs(1, A2) is the adsorption rate of A molecules from
surface 1.)

Species chemisorbed on a surface can be chemically distinct from what they are
in the gas phase. By the very definition of chemisorption, molecular electronic,
vibrational, rotational, and conformational states can be substantially modified
either from surface to surface, or from surface phase to gas phase. Furthermore,
because of the reduced dimensionality of surfaces compared with the gas phase, a
species chemical identity can have directionality on a surface; that is, taking the
x-y plane to be the surface plane and z-direction perpendicular to the surface, the
chemical properties of a chemisorbed species in the (x-y)-direction can be different
than its properties in the z-direction. Thus, for two materially distinct species,
say monatomic A and diatomic As, their chemical identities on surfaces S1 and
S2 can not only be different between the two surfaces in the x-y planes, they can
also be distinct in the z-direction. It follows, then, that their equilibrium surface
concentrations for the reaction (2 A = Aj) can be distinct between S1 and S2;
i.e., their surface phase equilibrium constants can be distinct: K(1) # K(2). It
also follows that their surface adsorption and desorption probabilities (P,qs and
Pges) can be distinct for A and Ay between the two surfaces; i.e., Pygs(1,A) =
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Pies(1,A) # Pogs(2, A) = Pies(2, A), and likewise for Ay.!

With this in mind, consider two sealed blackbody cavities (BBC(1) and BBC(2)),
one tiled with S1 and the other tiled with S2 (Figure 7.2a). Both are held at the
same temperature by an isothermal heat bath. Let the gas-surface reactions be
such that for S1 the x-y surface equilibrium favors A over A; and that for S2 the
surface equilibrium favors As over A. Let us consider the surface and gas phase
equilibria in each cavity in the limit that: i) species’ surface residence times are
long enough for surface phase equilibria to be established; ii) surface residence
times are long compared to gas phase residence times; and iii) that gas phase
concentrations are sufficiently low that gas phase collisions (especially three-body
collisions) are too rare to establish SGPE. Under these conditions, gas phase equi-
libria are set by surface reactions, rather than by gas phase reactions.

One dimensional potential energy diagrams that might be appropriate to S1
and S2 are depicted in Figure 7.3. Figure 7.3a shows a potential energy diagram
conducive to dissociative chemisorption of As into A, modeling surface S1. Figure
7.3b, on the other hand, shows a potential conducive to the associative chemisorp-
tion of Ay and recombinative chemisorption of A, thereby modeling surface S2.

At equilibrium for the reaction (2A = A,), gas phase concentrations in a given
cavity are fixed by the following six constraints:

n(s, As) _ n(g, Az)

K(s) = n2(s, A)’ (9) = n2(g, A4) (7.1)

Res(A) = n(s, A)vatt(A) Paes(A) = in(g,A)vAPads(A) = Rads(A) (7.2)

Riea(Az) = (s, A (A2) Pacs(42) = (9, 4204, Pads(42) = Roas(4:)
(7.3)

Pdes(A) = Pads(A); Pdes (A2) = Pads (AQ) (74)

Equations (7.1) gives equilibrium constants for surface and gas phases, respectively.
Equations 7.2 and 7.3 are equilibrium constraints on adsorption and desorption of
A and A, following the principle of detailed balance. Lastly, (7.4) are statements
of microscopic reversibility applied to adsorption and desorption. (Without loss
of generality, this constraint can be sharpened to summing discrete quantum me-
chanical state-to-state transitions between gas and surface phases.) Here v4; is the
gaseous thermal velocity of species Aj; v4y is the attempt frequency for desorp-
tion, which is roughly equal to the lattice vibration frequency, vay ~ v, ~ 10'3Hz
for typical surfaces.

Equations (7.1-7.4) can be solved simultaneously to yield the formal gas phase
equilibrium constant for each cavity:

I Microscopic reversibility guarantees that P,gs(i, Aj) = Pges(4, A;). Presumably, this should
be true both for the average macroscopic behavior and for microscopic state-to-state transitions.
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Figure 7.3: One dimensional potential energy diagrams for A and As interacting
with surfaces S1 and S2. The zero in potential energy is that of free, gaseous As.
(a) Surface 1: Dissociative chemisorption of As. QR = Dissociation energy of
gaseous As in gaseous A, E(A-A); RS = Weak physisorption enthalpy for Ag; RT
= Dissociation enthalpy of surface Ao, AHgiss qct(1) and also desorption enthalpy
of Ag, AHges(1, As); QTH = Desorption enthalpy of A, AHgs(1,A)). (b) Surface
2: Associative chemisorption of Ay and recombinative chemisorption of A. QR
same as in (a); RS = Desorption enthalpy of As, AHges(2, A2); % = Desorption
enthalpy of A, AHg.5(2, A); TS = Dissociation enthalpy of A, AHg;ss act(2).
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2
n(g, Az) [yatt?A)} n(s,As) 1 V4 Vatt(As)

(g) = RZ(Q,A) o 4 [VL(EZ)} TLZ(S,A) B ZUA2 Vgtt(A)

K(s)  (7.5)

Since v% = 2v4, and since vy (A) >~ vee(A2) =~ v, this can be simplied to

~ | YAz
k(o) = 5| K00 (7.6)
Given that v4, is independent of surface effects and v+ ~ v, is relatively inde-
pendent of surface type, but given that K (s) can be strongly dependent on surface
type, (7.6) implies that the gas phase equilibrium in a cavity K(g) can be set by
the surface phase equilibrium. Thus, at a single temperature, sealed BBC(1) and
BBC(2) can harbor distinct gas phase equilibria. This is not particularly surpris-
ing considering that if gas phase collsions are rare, then there is essentially no
mechanisms to set the gas phase equilibrium. In other words, the surface phase
Gibbs free energy trumps the gas phase Gibbs free energy for the reaction (2A =
As).

The stage is now set to form a steady-state chemical nonequilibrium. Let the
two cavities be connected by a small hole, as depicted in Figure 7.2b. The hole
appears to each cavity like a material wall of the opposite chamber. If the gas phase
equilibria in the two cavities are distinct, then, under the additional constraint
that the total flux of A atoms (the sum in the forms of monatomic A and diatomic
Ajy) passing through the hole in each direction is the same, there can obtain a
steady-state nonequilibrium in each cavity. The total A-flux constraint for the two
isothermal cavities is written: n(1, A) + %n(l, As) =n(2,4) + %n(l As). For
the limiting case K (1) < 1 and K(2) > 1, one has from (7.5,7.6) that n(1, 4) >
n(1, A2) and n(2, A3) > n(2,A), in which case the A-flux constraint becomes
n(l,A) ~ %H(Q,Ag).

The total A-flux constraint guarantees that neither cavity gains nor loses atoms.
If the hole is small, then the gas phase concentrations in each cavity are shifted only
slightly from their respective equilibria. Both gas phases now represent steady-
state nonequilibria since they each must continuously process what for each is a
nonequilibrium gas flux: the distinctive flux from the other cavity. The magnitude
of the nonequilibrium shift is proportional to the size of the hole. If the hole
is kept small neither cavity will dominate the other’s gas phase and each will
process the small nonequilibrium flux from the other. This can also be argued
persuasively from Le Chatelier’s principle. Also, regarding temperature variations,
if the particle numbers are kept low and the cavities are thermally well-coupled to
the surrounding heat bath (well thermostatted), then the unbalanced, steady-state,
nonequilibrium dissociation and recombination will not significantly alter surface
temperatures away from the heat bath temperature. Thus, two distinct chemical
equilibria can be conjoined to form a steady-state chemical nonequilibrium. The
DSPG follows directly from here by appealing to ideal gas behavior.

The ideal gas law does not discriminate between monatomic and polyatomic
gases with respect to gas pressure; gas pressure depends only on temperature and
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number density. Since the gas phase concentrations of A and A, can be partitioned
differently between BBC(1) and BBC(2), owing to the chemical differences of S1
and S2, then, even under the total A-flux constraint, the total number densities
of particles can be distinct between the two cavities. If the gas is treated as ideal
(which is a reasonable approximation at the low pressures assumed here, but which
is not required for the result), it follows that the pressures in the two cavities will
be distinct. Specifically, one has:

Py = [n(1, A) + n(1, A)]KT # [n(2, A) + n(2, A)|kT = Py. (7.7)

The pressure difference between BBC(1) and BBC(2) (AP = P; — P;) can be
shown to be the same as (18) in [1]. In the limiting case above (K (1) < 1 and
K(2) > 1) with its A-flux constraint (n(1, 4) ~ %71(2,%12))7 applying (7.7), one
finds Py ~ n(1, A)KT # n(2, A2)kT ~ /2P, ~ Py; that is, % =+/2 and AP # 0.
In general, AP will be non-zero for chemically distinct cavities except for highly
contrived initial conditions. Since this pressure difference occurs continuously over
a finite distance Az between the cavities, there is a pressure gradient (VP ~ %).
This establishes the DSPG. Even if the gas is less than ideal, the DSPG is unlikely
to disappear since AP can be made to be of the same order of magnitude as the
total gas pressure. The gas would need to be highly non-ideal (with precisely the
correct signs and magnitudes of non-ideality) to negate AP.

It is counterintuitive that two isolated equilibria (BBC(1) and BBC(2)), when
combined, should form a steady-state nonequilibrium, however, this follows log-
ically from treating the gas and surface phases on equal footing with respect to
detailed balance. In BBC(1) and BBC(2), the gas phase is essentially chemi-
cally inert, therefore, the surface phase concentrations primarily determine the
gas phase concentrations. The ‘axiomatic’ claim that the gas phase is unique and
can only be SGPE — regardless of surface type — cannot be justified since it treats
the gas phase as a preferred phase relative to the surface phase with respect to
detailed balance.

More to the point, chemical equilibrium is the result of the balance of forward
and reverse rates of specific chemical reactions. If a specific process is absent or
its rate is small compared with the rates of competing reactions, then its effect
on the equilibrium is small or zero. In BBC(1) and BBC(2) gas phase reactions
are virtually absent, while surface-specific chemical reactions (e.g., adsorption and
desorption) dominate, therefore, it is they that primarily determine the gas phase
equilibria in BBC(1) and BBC(2). From the connected cavities in Figure 7.2b it
is a small step to a single cavity with two surfaces (Figure 7.2c), and from there
on to Duncan’s radiometer (Figure 7.1).

7.3 Pressure Gradients and Reaction Rates

The DSPG is supported by the principle of detailed balance, but it is not
sufficiently specific to point to laboratory tests. In this section, the DSPG is
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derived from reaction rate theory under standard approximations used in systems
with low gas pressure and low surface coverage. When realistic physical parameters
are ascribed to this hypothetical chemical system, it is found that the DSPG should
be a robust, laboratory-testable effect.

Consider a sealed blackbody cavity into which is introduced a small quantity
of dimeric gas, As. The cavity walls are made from a single chemically active
material (52), except for a small patch of a different material (S1). By definition,
in steady state the average numbers of A and A on any surface and in the cavity
volume are time invariant, i.e.,

dN (i, Aj)
dt

where the subscripts i = 1,2,0or ¢ stand for surfaces 1 or 2 or the cavity volume;
and N is the average number of either species A or A;. Equation (7.8) can be
expanded in terms of the various sources and sinks of A and As:

=0 (7.8)

dN(c, A
L) — 0= (Ruea(1,4) = Raao (1, AN(SA): + [Raen(2, 4) ~ B2, A)(S )+
[2Rdiss(ca AZ) - Rrecomb(ca A)]Vcav (79)
dN (c, A
% =0= [Rdes(la A2)_Rads(1a AQ)](SA)1+[Rdes(27 AQ)_Rads(27 A2)](SA)2
1
+[§R7'ecomb(ca A) — Ryiss (Cv AQ)]VYcaU (710)
% =0= [Rads(lvA) - Rdes(la A) + 2Rdiss(17 A2) - Rrecomb(la A)](SA)I
(7.11)
VA2 0 = [Ruga(1, 42) ~ a1, A+ & Rrccom (L A) ~ R0, A2)(SA),
(7.12)
% =0= [Rads(Q» A) - Rdes(27 A) + 2Rdiss(27 A2) - Rrecomb(2a A)](SA)Q
(7.13)
% =0= [Rads(2a AZ) - Rdes (27 AQ) + %Rrecomb(2a A) - Rdiss(27 AQ)](SA)Q
(7.14)

Here R refers to adsorption, desorption, dissociation, or recombination rates
[m~2s7! for surfaces and m—3s~! for volume]; and (SA);, (SA)q, and V4, are
the surface areas of S1 and S2, and the cavity volume, respectively. Relations
(7.9-7.14) are generally applicable to gas-surface systems and, in principle, can
be simultaneously solved if given adequate thermodynamic information. Number
densities n(i, A;) can vary spatially due to local differences in reaction rates.

The following chemical constraints (a-f) are assumed for the cavity system
discussed above. These constraints are commonly assumed in gas-surface studies
[5, 6, 7, 8] and are easily shown to be both valid and self-consistent within a broad
parameter space. Further discussion of these constraints can be found elsewhere

[1].
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a) The gas phase density is low such that gas phase collisions are rare
compared with gas-surface collisions. (In other words, the mean free
path of gas atoms is very long compared with cavity scale lengths; i.e.,
A > L.q,.) However, the average pressure is much greater than the
rms pressure fluctuations; i.e., P.yy > 0 Prpys.

b) All species contacting a surface stick and later leave in thermal equi-
librium with the surface.

c¢) The only relevant surface processes are adsorption, desorption, dis-
sociation, and recombination.

d) Fractional surface coverage is low so adsorption and desorption are
first order processes.

e) Ay and A are highly mobile on all surfaces and may be treated as
two-dimensional gases.

f) All species spend much more time in the surface phases than in the
gas phase. In other words, the characteristic time any species spends
on a surface before desorbing (its desorption time, 74.5) is much longer
than its thermal-velocity transit time across the cavity, Tyrqns. Also,
for S1 the time scales for dissociation of Ay and recombination of A
is short compared with the desorption time. (These allow the surface
concentrations of A and As to be in chemical equilibrium.)

For this chemical model, the six general rate relations (7.9-7.14) can be solved
simultaneously or they can be recast into the following five equations in the six
variables, n(i, A;), with one variable taken as independent.

4
n(c, A) ~ mn(Z,A) (7.15)
e, Ag) ~ —— 2 _n(2. Ay) (7.16)

K(1) ~ thlAj; (7.17)
K(2) ~ ng;‘j; (7.18)
VA 204, 1 2
Zn(c7 A)+ n(c, Ay) ~ mn(l, A) + Tdes(LAz)n(l,Ag). (7.19)

Here 745 is given by:
AFEqes(t, Aj)
kT

In (7.15-7.19), n(i, A;) is the surface or volume number density of Aj; vy, is the
thermal speed of A; (va; is taken to be the same for gas and surface phases); and

Taes (1, Aj) =~ VLOF(i,Aj)eacp[ ] (7.20)

F(i,45) = (f—f*) is a ratio of partition functions. f is the partition function for
the species in equilibrium with the surface, and f* is the species-surface partition
function in its activated states. For real surface reactions, fi typically ranges
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between roughly 1073 — 10*. Here AEj., is the desorption energy (experimental
values typically range from about 1 kJ/mol for weak physisorption up to about
400 kJ/mole for strong chemisorption).

A two-dimensional gas phase can form on a surface, mediated by gas-surface
interactions. Because of the myriad of possible contributing physical effects, no
single theory completely describes this state, however, at low surface coverages
standard phenomenological models give the surface equilibrium constant K (i) for
the reaction (2 A= Aj) to be:

TL(Z, A2) ~ TAVA ’Yrecomb(i) exp[AEdiss,act (Z)]

K((i) = ~
(Z) 7’L2 (Za A) Vuib ,ydiss(i) kT

(7.21)

Here AFEy;ss,qct i the energy of activation for dissociation of Ay on surface i (typ-
ical values are 1-500kJ/mole); 74 is the atomic radius of A; v, is the vibrational
frequency of the molecule; 74;s5 is the probability of a molecular vibration leading
to dissociation on the surface (0 < vgiss < 1); and Yrecoms is the recombination
probability for A-A surface collisions (0 < Vrecomp < 1). By no means is this rela-
tion intended to describe all possible surface equilibria. In general, K (i) is unique
for a given gas-surface combination, here in (7.21), via the v and AEy;45 qct terms.
In theory, the surface equilibrium constant, K (i), can vary as 0 < K(i) < oo;
experimentally K is well known to vary for different molecules, surfaces, and tem-
peratures [5, 6, 7, 8].

The meaning of (7.15-7.19) can be inferred from inspection: (7.15) and (7.16)
are statements of conservation of A and Ay within the cavity; (7.17) and (7.18) are
statements of chemical equilibrium on S1 and S2; and (7.19) states conservation
of total A atoms on S1. With these five equations and with particular system
parameters (e.g., those in Tables 7.1, 7.2), one can calculate the steady-state
surface and volume species densities for this system. Note that (7.17) and (7.18)
describe chemical equilibrium on S1 and S2, but again, gas phase equilibrium is
not guaranteed in this model.

In addition to recasting the rate relations, the model constraints (a-f) also place
the following four limits on surface and volume densities:

Limit 1: The lower limit of cavity density is that at which statisti-
cal pressure fluctuations, d Pyp,s, remain negligible compared with the
pressure difference, AP. A standard relation between rms pressure
fluctuations and the number of particles in a system, N, is given by [9]:
0P 7~ [n(cl)LS 113, where L is the scale size of the system and
P is the average gas pressure. A criterion for rms pressure fluctuations

to be negligible is: §Prps ~ n(c)lﬁ < AP, where Lgq is the scale

size of the small S1 patch.

Limit 2: The upper limit cavity density is that density at which the
mean free path, A\, remains long compared with the cavity scale lengths.
Roughly, it is: A ~ % > Legy-

Limit 3: The upper limit surface species density, n(i, 4;), is that at
which the fractional surface coverage, 0, remains much less than unity
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Molecular Weight A, 40 amu
Atomic Weight A (mg4) 20 amu
Atomic Radius, A (r4) 5 x1071%m
RMS Velocity Az(va,) 790 m/sec
RMS Velocity A (va4) 1.1 x10%m/sec
Cavity A;Density(n(2, Az)) 2 x 10'%m—3
Cavity Temperature (Tj3) 1000 K
Cavity Radius (R) 0.1m

S1 Patch Scale Length 1073 m
Surface Area Ratio, gﬁ)f 10°

E(A-A) 240 kJ/mole

Surface Lattice Frequency,v, 10!3 Hz
Ay Vibrational Frequency,vy;; 10'3 Hz
Monolayer Density 10*° m—?

Table 7.1: Thermodynamic and operating parameters for a model DSPG system.

Surface 1 Surface 2

AE45(A) 250 200
AFE.5(A2) 260 190
AEdiss,act 0 30
F(A) 10-2 108
F(Ay) 103 1
Ydiss 10_1 10—9
Yrecomb 10-¢ 101

Table 7.2: Thermodynamic surface parameters for model DSPG system. All AFEs
are in kJ/mole.
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(0 <«1).

Limit 4: The lower limit surface density n(1, A) is set at that density
for which the recombination time of A on S1, Tyccoms(1), remains much
less than the desorption times, T4es(1, 4;).

The critical requirement for the DSPG is this: that in steady state, S1 and
S2 desorb distinctly in the same environment simultaneously. This will occur if
a(l) # «(2). For low surface coverage where desorption is a first order process,
the desorption rate ratio, % = af(i), is given by:
Res(i, Ag) _ n(i, As) F(i, A) or {AEdes(i,A) — AEdes(i,Ag)}
Rdes(i»A) ’I’L(’L,A) F(Z7A2) P kT .

a(7) (7.22)
The ratio « varies as 0 < a < co. Experimental signatures of differential a’s are
abundant [2,10-15]. If a(1) # «(2), the cavity gas cannot be in standard gas phase
equilibrium since this equilibrium must, by definition, be unique while the cavity
gas phase is twained by two distinct «(7).

In principle, the DSPG effect can arise in a sealed blackbody cavity where
a(l) # a(2), regardless of the relative surface areas of S1 and S2. However, a
simple case to analyse is one in which the surface area of S1 is much less than
that of S2; that is, (SA); < (SA)z. In this case, if the total desorptive fluxes of
Ay and A from S2 each far exceed the total fluxes from S1, then S2 will almost
completely determine the surface and volume inventories of A and As, regardless
of the behavior of S1. (This can be argued cogently from Le Chéatelier’s Principle.)
The conditions that the instantaneous fluxes of A and A, from S2 each greatly
exceed those from S1 can be written:

Rdes(27 AQ) > (SA)l
Rdes(laAQ) (SA)2

(7.23)

and Rges(2, A SA
des( B ) > ( )1

Ryes(1, A) (SA)y"
Effectively, S1 is made an arbitrarily small ‘impurity’ in the chemical dynamics of
the cavity.
Under conditions (7.23) and (7.24), and assuming all species leave all surfaces
thermally, the pressure difference between S1 and S2, (AP = P; — P,), can be
expressed as:

(7.24)

AP =mavaRaes(1, A)+ma,va, Raes(1, A2) =mavaRaes(2, A)—ma,va, Raes (2, A2)
(7.25)
or it can be written in terms of the desorption ratios « as:

a(2) — a(1)
(2a(1) +1)(2a(2) + 1)

where Rr(A) is the total flux density of A onto a surface, Rr(A) = $[n(c, A)va +
2n(c, A2)va,]. Notice from (7.26) that so long as a(1) # «a(2), then AP # 0. If

AP = (2 - \/i)mAUART(A)[

] (7.26)
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Surface 1  Surface 2

n(i, A)[m™2?] 88x 101 4 x10!2
n(i, A2)[m 7] 42x10° 3.2x 1015
0(:, A) 88x107% 4x1077
6(i, Az) 42x1071% 32x 104
Taes (%, A)[s] 0.012 2.9
Taes (i, A2)[s] 4000 8.7 x 104
Taiss(1)[s] 10712 3.7x 103
Trccomb(i)[sl 1075 2.3x10°¢

Rges(i, A)[m=2571] 7.3 x101® 1.4 x 1012
Rges(i, A2)[m™2s71]  1.1x10% 3.7 x 1018

"T—MII,("%? =a 14x 10718 2.6 x 10°

Table 7.3: Summary of derived system parameters for starting parameters in Ta-
bles 7.1 and 7.2 for the cavity concentration n(c, As) = 2 x 10*m=3 and temper-
ature T = 1000 K.

. . . . AP
AP persists over a distance scale Az, the pressure gradient is roughly VP ~ 2.

7.4 Numerical Simulations

Owing to the many independent variables specifying it — about two dozen in
Tables 7.1 and 7.2 — complete parametric analysis of a realistic DSPG system
is intractable. However, it will be shown for one particular DSPG system that:
a) with physically realistic parameters, a steady-state pressure difference, AP >>
0P, s, is obtained; and b) the physical constraints of the model are self-consistent.

Let a cavity (scale length L.q, = 0.1m) be coupled to an ‘infinite’ 1000 K heat
bath. The surface area of S1 (scale length Lg; = 1073m) is 1079 times less than
that of S2. (Let the cavity have dendritic structure and let S2 be porous.) Other
system parameters are given in Tables 7.1 and 7.2. Derived system parameters are
summarized in Table 7.3. In Figure 7.4 are plotted the various equilibrium surface
and volume species densities versus volume density n(c, A3). These are calculated
from simultaneous solution of (7.15-7.19), given n(c, As) as the independent vari-
able. Simultaneous solution of the more general equilibrium relations, (7.9-7.14),
under the approximation of surface chemical equilibrium, render the same results
as the simplified equations to within about 10 %.

Several features in connection with this system and with Figure 7.4 are note-
worthy:

1) As expected, each n(i, A;) increases linearly (logarithmically) with
increasing n(c, As).
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2) Species As dominates surface 2 and cavity inventories while A dom-
inates surface 1.

3) Inspection of Figure 7.4 and Table 7.3 indicates, surfaces 1 and 2
display different desorption ratios for all values of n(c, As). In particu-
lar, at n(c, A2) = 2 x 101 m=3, one has 1.4 x 10713 = o(1) < a(2) =
2.6 x 106,

4) The different desorption ratios occur simultaneously and in steady-
state in a single cavity.

5) The volume density interval (bounded by the two up arrows on the
abscissa in Figure 7.4), 2 x 104 < n(c, A2) < 2x 1017 m ™3, satisfies all
the constraints and limits described in the main text and indicates the
most viable region of operation for this system. The right limit line
in Figure 7.4 is set by the condition that A > L.4,. Here it is taken
to be A = 10L¢qy =~ 1m. The lower limit line is set by the condition
that Trecomp(1l) < Tges(1, A). This puts a lower limit on n(1, A). Here
it is taken to be 10n(1,A) = 7.6 x 10*m~2. The left limit line is
set by the condition that the statistical pressure fluctuations, ¢ Pry,s,
over the scale length of the S1 patch be much less than the pressure
difference, AP. Here the limit is taken to be 0 P,,,,s < 10AP, render-
ing a lower limit density, n(c, A2) = 4 x 101'm=3. The upper limit
line is set by the condition that the surface coverage by any species
be much less than one monolayer. Here it is taken to be § = 0.1, or
n(i, A;) = 10¥m~2. From these limits, it appears this system should
display the DSPG effect over about three orders of magnitude in cavity
gas density (2 x 10 < n(c, 42) <2 x 1017 m™3).

6) The pressure difference, AP, should range between 8 x 1077 <
AP < 8 x 10~* Pa over the viable cavity density range. This pressure
is significant in the context of the DSPG; i.e., AP > §Pppys.

7) It was verified numerically and analytically that the values of any
parameter in Tables 7.1 and 7.2 could be varied — in some cases, up
to several orders of magnitude from their table-stated values — and the
DSPG effect should persist.

In summary, there appears to be a broad range of physical values over which
the DSPG effect is viable. Furthermore, for this representative system the DSPG
model is self-consistent; in other words, the physical parameters necessary for the
validity of the model constraints are generated by the system itself. Details can
be found in Appendix B in [1].

At these gas pressures, gas phase populations have little effect on the total cav-
ity inventories of either species. Analysis indicates gas phase collisions, regardless
of their products, cannot shift cavity inventories of either species by more than
about one part in 10° from those values obtained by entirely neglecting those colli-
sions. Furthermore, any compositional changes caused by gas phase collisions are
erased during the long surface residence times of both species. Not surprisingly,
given its dominant surface area, the cavity wall (S2) is the principal reservoir for
both species. For instance, at the cavity concentration, n(c, Az) = 2 x 106m=3,
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the combined volume and surface loads of A and A, are roughly 4 x 10'° atoms
and 3.2 x 10'® molecules. The number fractions of A atoms associated with S1
: 82 : cavity volume are 2.2 x 107° : ~ 1 : 1.4 x 1077, For Ay molecules the
fractions are 1.3 x 1071 : ~ 1: 6.3 x 107%. These ratios indicate S2 dominates
cavity inventories of both species.

Surface 2 also dominates the fluxes of both species. It was claimed that in-
equalities (7.23) and (7.24) must be satisfied for S2 effluxes to greatly exceed S1

effluxes. From Tables 7.1 and 7.3, it can be shown that 3.4 x 1012 = % >

A 1 — — es 7A A - 1 141
EgA;z =107?, and 1.9 x 1077 = glﬁ,Ag > ELSQA%; = 1077. Both inequalities are

satisfied, so S2 dominates system chemistry.

7.5 Laboratory Experiments

7.5.1 Introduction

In this section, experimental results are presented which corroborate the theoreti-
cally predicted, central physical processes of the DSPG. These experiments do not
conclusively prove the existence of the DSPG; it can be inferred from the results
only with the acceptance of caveats, which will be discussed later. Most of these
caveats can be lifted with more sophisticated experiments.

In these experiments, surface dissociation rates were inferred for low-pressure
(0 - 90 Torr) hydrogen (Hz) on two high-temperature (7' < 2500 K) surfaces: tung-
sten (W) and molybdenum (Mo). The primary experimental conclusions bearing
on the DSPG were: i) when heated singly (i.e., one surface hot) or when heated
simultaneously (i.e., both surfaces hot) to identical temperatures and under identi-
cal hydrogen pressures, Mo displayed significantly greater (up to 2.4 times greater)
H, dissociation rates than W; ii) under low-pressure Hy atmospheres, gas phase
concentrations of H and Hy over heated Mo and W were not held at gas phase
equilibrium but were set by surface-specific reaction rates; and iii) when Mo and
W were heated simultaneously in the low-pressure regime and brought into close
physical proximity, the net Hy dissociation rate on both surfaces was reduced —
similarly in absolute magnitude for both surfaces, but more in relative magnitude
for W than for Mo.

Results (i) and (ii) are not surprising and, in fact, have been studied exten-
sively for these and many other gas-surface combinations — after all, heteroge-
neous nonequilibrium catalysis undergirds much of the world chemical industry —
however, direct comparisons of two metals under identical thermodynamic condi-
tions are less common. Result (iii) especially distinguishes these experiments in
that, taken together, results (i-iii) corroborate the central theoretically predicted
physical process of the DSPG, namely, that two chemically distinct surfaces can
simultaneously and cooperatively maintain different, nonequilibrium, low-density
gas phase concentrations over their surfaces [in a closed backbody cavity environ-
ment]. From these results, one can infer the existence of a steady-state, nonequi-
librium pressure difference (and gradient) between the two surfaces.
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Figure 7.5: Schematic of experimental apparatus. The W and Mo filaments are
symbolized by resistors.

7.5.2 Apparatus and Protocol

The experimental apparatus and protocol were straightforward. Centered within
a stainless steel cylindrical vacuum vessel (40 cm high, 30 cm diameter)), two
slab filaments (W and Mo; 6 ¢cm x 3.3 mm x 0.127 mm) were dc ohmically heated
(300 < T < 2500 K) in a constant pressure atmosphere (either vacuum, pure He, or
pure Hy; 1076 Torr < P < 90 Torr), with their broad surfaces facing one another
(See Figure 7.5). Their physical separation (d) could be varied over more than a
factor of 20 (1.5 mm < d < 35 mm). Electrical power was supplied a filament to
achieve a fixed temperature against the several possible energy loss channels (e.g.,
convection, conduction, radiation, Ho dissociation). Temperature was measured
with an optical pyrometer, was truthed by color-matching the filaments against
each other, and also by comparison of power dissipation by the filaments under
vacuum and He. The pyrometer was calibrated against the melting points of six
pure metallic filaments (W, Ta, Mo, Hf, Zr, Ni). Temperature-dependent spectral
emissivities were used (epr,(2000K - 2250 K) = 0.37-0.36; e (2000K - 2250K) =
0.43). Gas pressure was measured using calibrated capacitance manometer gauges.
At the experimental temperatures, the vapor pressures of Mo and W were low and
did not appreciably affect the results.

For typical experimental temperatures and pressures (e.g., T = 2200 K, P(Hz)
= 2.5 Torr), the fraction of power dissipated in the various loss channels was
roughly as follows: radiation (~ 0.40); Hy dissociation (~ 0.45); conduction (~
0.05); simple convection (~ 0.05); enhanced convection due to excitation of Hy
rotational/vibration modes (< 0.05). These values, of course, depended on the
filament temperature, gas type and pressure, and on filament separation. The
latter could lead to radiative and convective co-heating of the filaments, as well
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as co-heating due to surface recombination of H atoms generated by the opposite
filament. (The dissociation reaction, Ho — 2H, is highly endothermic; the H-H
bond energy is E, = 431 kJ/mole.)

The power consumed by a filament dissociating hydrogen, P4, as well as other
loss channels, could be inferred by running the filament at a fixed temperature
first in vacuum, then in He, and lastly in Hs, the latter two at identical pressures.
This protocol followed roughly that of Jansen, et al. [11] in their investigation
of Hy dissociation on rhenium; the present results agree well qualitatively and
quantitatively with theirs.

The filament power consumption in vacuum, P,,., was due strictly to radiation
(Prgqa = ecT*A filament) and to heat conduction from the hot filament to the cool
copper electrodes holding it: P,oc = Praqg + Peong- Since the Mo and W filaments
had identical dimensions and comparable spectral emissivities and coefficients of
thermal conductivity, not unexpectedly, their radiative and conductive losses were
similar. When the filaments were run in He another loss channel, simple convection
(Peonv,s), was added. The convective power consumption was inferred by subtract-
ing P,qc from the total power consumption in He; that is, Peony,s = Pre — Pogc-
Helium was used since its thermal conductivity at low temperatures (7" < 1700
K) is within about 15% of that of Hy and, therefore, can be used to estimate the
simple convective losses due to Hy. Since the convective losses are relatively small
in either He or Ha, this fractional difference amounts to only about 1% of the total
power consumption of a filament in Hs.

Lastly, from the power loss in a Hy atmosphere (Py,), the power consump-
tion due to hydrogen dissociation, Ppq, could be estimated from Prgq >~ Pr, — Pre.
Properly included in Py, for higher temperatures (7' > 1700 K) are additional con-
vection terms, Popny,q, associated with excitation of rotational/vibrational modes
of Hy and the additional heat capacity arising from the generation of 2H from a
single Hy. Estimates indicate that these contribute 10% or less to Pyq. The rel-
ative smallness of P,opy,q can be estimated by considering the ratio of H-H bond
energy (Ep = 4.47 €V) to the equipartitioned thermal energy (~ kT ~ 0.20 eV,
for T = 2250 K). This ratio is f—:,’l = % ~ 22. Also, presumably, the vibra-
tional /rotational excitation of Hy should be nearly the same on both W and Mo,
so these power losses should not mask the power losses due to the true chemi-
cal differences between the surfaces. Plasma production was not evident in these
experiments, nor was it expected since the ionization energy of hydrogen atoms
(13.6 €V) and molecules (15.4 eV) far exceeded the thermal energy (KT ~ 0.2 eV).
Photodissociation of Hy at the experimental temperatures was negligible.

A high degree of physical symmetry was built into the apparatus in order to
assure that conductive, convective, and radiative losses were as similar as possible
for both filaments. The filaments, manufactured to identical physical dimensions,
were placed symmetrically facing each other at the center of the cylindrical vacuum
vessel, oriented parallel to the plane of vessel’s own plane of bilateral symmetry
(this with respect to its horizontal and vertical ports). The copper electrodes
holding the filaments were identical; their power and diagnostic wire leads were
symmetrical in design and placement. The power supplies, ammeters, and volt-
meters for both filaments were identical models and were calibrated against each
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other and against a third, fiduciary instrument. Experimental gases were not
passed through the chamber on a continuous basis during experiments since dy-
namic pressure control is not wholly reliable and since forced gas flow could lead to
asymmetric convective instabilities; rather, a single gas load was used for a related
set of measurements. The experimental measurements to follow were repeatable
to within about 10%.

7.5.3 Results and Interpretation

In Figure 7.6 is plotted Prq versus temperature for Mo and W filaments heated
individually at 2.5 Torr pressure Hy. (The case where the filaments were heated si-
multaneously displayed similar results.) The consistently greater power consumed
by the Mo establishes that the surface dissociation rate on Mo is greater than on
W. It also indicates that the gas phase concentrations of H and Hy over Mo and
W cannot both be at gas phase equilibrium values, since, by the general require-
ments of equilibrium thermodynamics, the gas phase equilibrium concentrations
are unique at a given temperature and pressure. In fact, these experiments show
that nonequilibrium gas phase concentrations are maintained over both surfaces.
(One would not expect gas phase equilibrium to be established in the low pressure
regime (P(Hz) < 10 Torr) since the mean free path for the three-body collisions
(required for hydrogen recombination reaction 2H — Hs) is many times longer
than the vessel scale length. Rather, gas-surface reactions, either on the filaments
or at the vessel wall, should primarily determine the gas phase concentrations.)

In Figure 7.7 is plotted the difference in P4y between Mo and W per Torr Hs

(i.e., 5(1;};) = Phd(M;();IS“(W)) versus Hy pressure, P(Hs). Filaments were heated

individually at T = 2200 K with 33 mm separation. (Similar experiments with
the filaments heated simultaneously gave similar results.) At low pressures (P(Hz)
< 10 Torr), where the mean free path for the three-body, H-atom recombinative
collisions is long, one expects surface-specific reaction rates to dominate such that
ﬁ(i’;;) should be relatively large. The data show this. The non-zero values of ﬁ(%‘;)
at low pressure are indications of both nonequilibrium gas phase concentrations
of H and Hs and also of a larger surface dissociation rate for Ho on Mo than on
W. At high pressures, on the other hand, the three-body recombinative mean free
paths are relatively short, gas phase reactions begin to dominate, and gas phase
equilibrium is approached over both surfaces. As a result, the chemical distinction
between the two surfaces vanishes and -22:4 decreases to zero, also indicated by

P(H2)
Figure 7.7.

In Figure 7.8 is plotted Prq versus filament separation distance d (See Figure
7.5). Mo and W were heated simultaneously to T=2200K at P(Hy) = 2.5 Torr.
Also plotted, for reference, are the Ppq values for the filaments run singly (dot-
ted lines). At large separations, P4 values for the filaments run simultaneously
approach the values of Pyq for the filaments run singly; this is not surprising. As
d is reduced, however, Pyq decreases for each filament. The absolute value of the
decrease is roughly the same for each filament at all separations, but the relative
change is greater for W than for Mo. Also, the power consumption for the fila-
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Figure 7.6: Hydrogen dissociation power, Pyq4, versus filament temperature for W
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Figure 7.8: Hydrogen dissociation power, P4, versus filament separation, d, for
W and Mo. (T = 2200 K; P(Hz) = 2.5 Torr; filaments heated simultaneously).
Dotted lines indicate Prq for filaments heated singly.

ments remain distinct in the d — 0 limit. The most reasonable explanation for
the decrease in Pjg with decreased filament separation is that each filament begins
to recombine H atoms desorbing from the other filament. The highly exothermic
recombination reaction reduces the electrical power necessary to maintain a fil-
ament at 2200 K. Additional experiments at other pressures indicated that this
proximity effect is most pronounced at low pressure and at high temperature.

This behavior of Mo and W in the hydrogen atmosphere is what one expects
of a DSPG system, namely, a stationary nonequilibrium thermodynamic state in
which each surface dissociates Hy at a different rate and maintains its own local
and distinct gas phase concentrations at each separation distance.

Under the assumptions that the influx of gas to each surface is the same and
that species leave in thermal equilibrium with the surfaces, one can infer the
difference in momentum flux densities F,, (i.e., pressure) between the two filaments
in terms of known and experimentally measured quantities:

[Pra(Mo) — Pra(W)]mava
EbAfilament

AF, ~ (7.27)
For typical experimental values (e.g., T = 2200K, F(Hsy) = 2.5 Torr), one infers
a steady-state pressure difference between the surfaces of AF, ~ 1 Pa. This is
small compared with the background pressure in the vessel (% ~ 0.002), but

it is significant in the context of the DSPG. It is two orders of magnitude greater
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than those predicted for statistical rms pressure fluctuations and is several orders
of magnitude greater than that predicted in the reaction rate derivation of the
DSPG, but it is consistent with the detailed balance derivation. For comparison,
it is also several orders of magnitude greater than pressure fluctuations associated
with audible sound.

7.6 Discussion and Outlook

In this chapter, theoretical and experimental developments of the DSPG are
presented. The outlook for confirmation of this effect, and its attendant second
law challenge, are promising.

The low-pressure, low-surface coverage regime (§7.3), although admitting labo-
ratory tests, probably underestimates the physical limits of the DSPG effect. The
first derivation (§7.2), based on detailed balance is more general and permits the
DSPG at much higher pressures and surface coverages. With respect to the rate
equation approach, many potentially interesting surface effects can be considered,
for example, higher order surface reaction rates, multidimensional molecule-surface
potential energy surfaces, polyatomic molecular reactions, surface loading effects,
tunneling, incorporation, absorption, surface defects, edge effects, side chemical
reactions, activation energies of desorption, precursor states, and potential ener-
gies of mobility. These details are not required for the detailed balance approach
since it deals with only total particle fluxes.

The range in gas number density over which the DSPG is predicted by de-
tailed balance should extend over several orders of magnitude more than the re-
action rate model. In the latter, the DSPG is limited to an upper limit density
of about 101"m=3 (1073Pa ~ 10~%atm), while in the former it is limited only by
the constraint that gas phase equilibrium is not established via gas phase reac-
tions. For example, given the long mean free paths for three-body collisions and
the relaxation of the low-6 constraint, the pressure range for the DSPG might be
extended up to 10%* — 10?2 m=3 (102 — 103Pa ~ 1072 — 10~ 2atm); that is five to
six orders of magnitude greater than predicted in §7.2-7.4. This higher pressure
range eases concerns about statistical pressure fluctuations being in competition
with the DSPG, and also makes laboratory searches more inviting.

Many laboratory experiments over the last 100 years corroborate the key phys-
ical processes of the DSPG , namely, that different surfaces can display different
dissociation rates for gases at low pressure, when reaction rates are surface limited
[5-8,10-15]. Laboratory searches for the DSPG should be possible. The broadest
base of technical knowledge for molecular-surface interactions exists for light di-
atomic molecules (e.g., Ha, No, Oz, CO, Cly) with transition metals (e.g., Fe, Ni,
Pt, Cu, Pd, Au, Ag) and semiconductors (e.g., Si, Ge, GaAs). These reactions are
usually most vigorous at high temperatures (7' > 1000K), but, in principle, these
effects should also be possible at low temperatures. Surface desorption and dis-
sociation energies can be less than 0.1 kJ/mole for van der Waals interactions, so
these effects might occur at or below room temperature, perhaps even below 100K
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for weakly bound van der Waals molecules such as Ary or Hes. Experiments with
noble gases on metals indicate that some species (e.g., Hes) might, in principle,
display the DSPG effect down to within a few degrees of absolute zero [16-20]. An
experimental signature of this should be a variation in the second virial coefficient
for a van der Waals gas depending on the composition or stucture of the confining
surface.

The experimental results presented (§7.5) strongly corroborate key behaviors
of the DSPG, but they do not conclusively prove its existence and their corrobora-
tion requires several caveats. First, it is emphasized that direct measurements of
pressure were not made in these experiments; the pressure difference AF,, was in-
ferred under the assumptions that the gaseous influxes to Mo and W were the same
and that effluxes left both surfaces at thermal equilibrium with them. These are
reasonable assumptions, but if, for example, Boltzmannian population statistics
for vibrational /rotational/electronic states were severely violated for gas collisions
on one or both surfaces, then the inferred APj,4 apparent in Figure 7.8 (and from
which AF, is inferred) could be largely erased — but this in itself would be quite
interesting thermodynamically. Second, in these experiments, the surfaces were
heated ohmically, whereas the DSPG calls for them to be heated under blackbody
cavity conditions, that is, by blackbody radiation, convection, and conduction,
rather than by the passage of electrical current. It is not known if the chemical
activity of the Mo and W surfaces were significantly altered by current flow.

Finally, and most importantly, these experiments were not conducted under
sealed, high-temperature blackbody cavity conditions. The region between the
heated filaments, at best, only approximated a blackbody cavity, while the actual
cavity walls (vacuum vessel) were significantly cooler than the filaments (e.g.,
330 K versus ~ 2200 K). The species concentrations of the flux from the walls
to the filaments was certainly different from the flux from the filaments to the
walls; in particular, it was probably enriched in Hy. Despite this, there are good
reasons to believe that the nonequilibrium gas phase concentrations in the vicinity
of the filaments, especially when their separation d was small, may have fairly
well approximated that which would have arisen inside a true high-temperature
blackbody cavity. As mentioned above, gas was not passed through the vacuum
vessel continuously, but rather, a single load of gas was used in each experiment.
This allowed a steady state gas phase concentration to develop in the entire cavity
within a few seconds. At the experimental pressures, the mean free path for two-
body collisions was much shorter than the scale length of the filaments (10~° m
~ A L lfilament ~ 10—3 m), so the gas could be taken to be diffusive, in which
case, one would expect that both surfaces of both filaments would interact strongly
with each others’ surface efluxes. And, when the filaments were closely spaced
(d ~ 2 mm < lfiament), the gas phase concentrations of H and Hy in this gas
diffusive environment were likely to be similar between the front and back of each
filament. Therefore, if the distinct Ppq values for Mo and W indicated in Figure
7.8 are maintained in the d — 0 limit, then one could reasonably expect that
that they would remain distinct under sealed, high-temperature blackbody cavity
conditions. This behavior would amount to the DSPG.
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Figure 7.9: Proposed experimental design for improved DSPG experiments.

To lift the above caveats, one might construct Duncan’s turbine or idealize it
with a torsion balance. In fact, Sheehan conducted torsion balance experiments
with a tungsten/molybdenum torsion vane similar to that in Figure 7.1, suspended
by a fine tungsten torsion fiber in a high-temperature blackbody cavity. Alternat-
ingly infusing the cavity with helium and hydrogen (as for the previously discussed
filament experiments), vane deflections consistent in direction and magnitude with
the DSPG effect were observed, but these were confounded by pressure fluctua-
tions and by the slow, hysteretic thermal expansion of material parts, such that
a reliable conclusion could not be reported. Given suitable time and resources,
however, this experiment could probably be successfully staged.

At the time of this writing, more sophisticated experiments are in progress
(Figure 7.9). These will measure the temperature-dependent electrical resistivi-
ties of thin filaments of W and Mo inside sealed high-temperature W and Mo core
cavities filled with hydrogen. In Figure 7.9, the core will be heated radiatively
by the outer, ohmically-heated cavity. High-precision resistance measurements
will allow discernment of small absolute temperature variations (on the order of
1 K or less) between W and Mo filaments due to differential hydrogen dissocia-
tion/recombination rates. This experimental design should lift most of the caveats
associated with the previously described experiments. If steady-state temperature
differences between the filaments are observed, this would imply the DSPG effect,
but even more directly this temperature difference would imply the possibility of
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a heat engine operated across the temperature gradient between the W and Mo
filaments, but powered ultimately by the single external heat bath. A number of
resolutions have been forwarded for this chemical paradox. These are compiled
and discussed elsewhere [3].

In summary, the DSPG effect, and by extension a second law challenge, appears
to be a robust chemical phenomenon that is open to direct experimental test.
Corroborative experiments support it, but more definitive tests are needed.
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8

Plasma Paradoxes

Second law paradoxes are proposed for two low-temperature (7' ~ 2000K) plasma
systems. Each has theoretical and experimental corroboration.

8.1 Introduction

This chapter is concerned with two challenges based in plasma physics, desig-
nated Plasma Iand Plasma I1[1, 2, 3, 4]. They arise from: i) the disparate physical
behaviors of ions (high mass, positive charge, slow time response) and electrons
(low mass, negative charge, fast time response), which allow steady-state macro-
scopic electrostatic sheaths to form at boundaries; and ii) the manner in which
certain low-temperature plasmas are produced — via surface ionization. Although
distinct in themselves, these plasma challenges serve as central links between the
other USD challenges (§10.1.1). The gravitational and solid state challenges, for
example, were inspired by Plasma I, and the chemical challenge can be seen to be
an analog of Plasma II.

Both plasmas systems are theoretically motivated and both have laboratory
experiments that corroborate their central physical processes. (The classical ther-
modynamic explanation of Plasma I [1, 3] is buttressed by a fuller quantum me-
chanical interpretation [4].) They reside at the high-temperature, low particle
density limits of currently known second law challenges.

This chapter will be divided into two parts, covering the theoretical and ex-
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Heat Bath

Figure 8.1: Schematic of Plasma I system.

perimental support for each system. Resolutions to the paradoxes are reviewed.

8.2 Plasma I System

8.2.1 Theory |1, 3, 4]

Consider an electrically conducting probe suspended in a high-temperature, black-
body cavity housing a low-density plasma (Figure 8.1). The cavity walls are elec-
trically and thermally grounded to the heat bath and the probe is connected to
the cavity walls through a load. The load can be conservative (e.g., a motor) or
dissipative (e.g., a resistor). The probe and load are small enough to represent
minor perturbations to the cavity properties.

Since the probe can electrically float with respect to the walls, if the voltage
between the probe and walls is non-zero, this voltage can drive a current through
the load, doing steady-state work. This can be brought into sharper relief by
placing a switch between the probe and the load (Figure 8.1). In this case, when
the load is electrically shorted to ground, the probe is physically disconnected from
the walls (ground) and will electrically charge as a capacitor to the plasma floating
potential. When the switch is reversed, the probe will discharge as a capacitor
through the load and plasma. With an ideal switch, this charging and discharging
of the probe through the load can be repeated indefinitely, performing work in
apparent violation of the second law.

In this discussion, several electrostatic potentials will be introduced; with ref-
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erence to Figure 1, they are:

Vy = reference potential of cavity walls and heat bath (ground), both
taken to be zero (V; = 0).

Vpi = potential difference between the bulk plasma and ground.

V¢ = potential difference between ground and the probe when it is
electrically floating in the plasma; i.e., when the probe draws no net
current from the plasma.

V1, = potential difference across the load.

Vpr = potential difference between the probe and the walls.

This system can be treated through the formalism of Q-machines and self-
emissive Langmuir probes [5, 6]. The cavity walls are at ground potential, here
taken to be zero. The plasma potential (V,,, the potential between the bulk plasma
and the cavity walls (ground)) will be positive or negative depending on the work
function and temperature of the walls, and the plasma type and concentration.
In the absence of any net current to the plasma or walls, the plasma potential
is calculated by equating the current leaving the walls to the current received by
the walls. If thermionic electron emission from the walls dominates over plasma
production, one has an electron-rich plasma in the cavity, in which case one may
estimate the plasma potential by equating the Richardson emission from the walls
to random electron flow from the plasma into the walls:

ed eV nev
AT? exp(—— —y=—

exp(— o) exp( T2 =

Here ® is the wall material’s work function, T' is temperature, V}; is the plasma

SkT.
TMe

(8.1)

potential, v, is the average electron thermal speed (v, = for a Maxwellian

distribution), k is the Boltzmann constant, m. is the electron mass, n is the plasma
particle density, and A is the Richardson constant for the material with a value
of about 6 — 12 x 10° mQAKQ for pure metals. Here V,; is taken to be negative for
electron-rich plasmas, however V,; may be positive if the electron current from
the plasma to the walls exceeds the Richardson emission from the walls to the
plasma; in this case one has an ion-rich plasma. This occurs above a critical

plasma density, n.:

4AT? ed

oo, eXp(—ﬁ), (8.2)

as can be seen from (8.1). For tantalum (®p, = 4.2 V) at T = 1500 K, the critical
density is n. ~ 2 x 10'2m~3. The plasma potential can be negative (positive) for
an electron (ion)- rich plasma, and zero only for very specific cavity conditions.
A probe placed in this plasma will achieve a potential with respect to the
plasma and walls depending upon the probe temperature, resistance to ground
(load resistance, Ry), and the nature of the current flux to it. The potential dif-
ference between the probe and the walls is given by the intersection of the load line
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LLV

LI-VC

Figure 8.2: Probe load line voltage (LLV) and Langmuir current-voltage char-
acteristic (LI-VC). The intersection of the two curves is the probe-wall voltage,

Vew.

voltage, Vi, = I Ry, with the probe’s Langmuir current-voltage chararacteristic
curve, as shown in Figure 8.2. Here Vi, and Ij, are the load voltage and current,
respectively. The probe for this system will be nearly in thermal equilibrium with
the walls, therefore, is expected to be self-emissive. As detailed in Hershkowitz
et al. [6], self-emissive probes should electrically float near the plasma potential,
therefore, so long as its resistance to ground is large, the probe should reside
near the plasma potential, V,;, and V,; should be roughly equal to Vz. If the
load resistance is zero, the probe is shorted and will reside at ground potential
— an uninteresting case. The power consumed by the load may be expressed as

P = % = I%RL. Ideally, V;, should be the potential difference between the
probe and walls, which, for an emissive probe and large Ry, should be roughly the
plasma potential, Vp;, as given in (8.1) for electron-rich plasmas. The maximum
current through the load should be roughly the current intercepted thermally by
the probe; that is, Iy (max) ~ "= (SA),, where (SA), is the probe surface area.

(See §8.4 for additional discussion on this point.) The rate of entropy production

by the load is % = PT—L = %; this will be positive (negative) for a purely dissi-
pative (conservative) load. Note that the paradox is not restricted to systems with
thermionically emitting walls; any plasma system with a non-zero plasma poten-
tial appears viable. Note that the load cannot supply unlimited power by reducing
Ry, since the probe cannot supply unlimited current to the load — maximally only
that which it receives from the plasma — so the load power has an upper limit:

Py ~I2Ry.
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That this probe electrically floats with respect to the walls, that it can be al-
most unperturbing to the plasma, and that a steady-state current can flow through
the load performing work should not be surprising; these behaviors have been ob-
served in many plasma experiments. However, if one admits that this system does
work on the load while maintaining a time-averaged steady-state (not necessarily
equilibrium) temperature and species concentration profiles, and if one assumes
the first law of thermodynamics is satisfied, then a paradox involving the second
law naturally develops.

The crux of this challenge is deduced by assuming the second law is upheld by
the paradoxical system and then identifying the non-trivial necessary condition(s)
that make(s) it so. Specifically, as the paradox is posed, the second law is violated
iff the load consumes power; therefore, for the second law to hold, the load does
not consume power; i.e., P, = 0. The load’s electrical power consumption is:

P = X—Li. But R; < oo, therefore, Vz, = 0. Thus, the crux of the paradox lies
with the potential drop across the load: If V, = 0, there is no paradox; if Vg, # 0,
the second law is violable. No other non-trivial, necessary conditions are apparent.

As in Figure 8.1, it is assumed the probe is immersed in an blackbody cavity

plasma (T, ~ T;). The general requirement is deduced in the following five points.

i) Vi = V.

ii) The plasma potential satisfies the inequality: Vy < V.

iii) V,, satisfies the inequality | V; [>]| Vpr |[> V, = 0, depending on
the magnitude of Ry. As Ry, — oo, Vp,, — V¢;as Ry — 0, Vp, — 0. If
Ry # 0, then V), # 0. In particular, if Vy <0, then Vy <V, <0.

iv) If V,y < Vy = 0, then by (i-iii) above, Vi, satisfies the inequality
Vi, <0, and if Ry, # 0, then the strict inequality holds: Vi, < 0. Hence,
Vi, # 0.

v) For any value of V;, then by (i, iii) above, V[, satisfies the inequality
| Vi |>] Vi |> 0, therefore, if Vy # 0 and Ry, # 0, then Vi, # 0.

Point (v) establishes the general requirement for second law violation in terms
of the floating potential; it is: V; # 0. Point (iv) sets a more restricted requirement
in terms of the plasma potential; it is: Vj; < 0. (Other values of V},; may also be
viable, but these must be checked on a case by case basis.)

Point (i) can be verified by inspection of Figure 8.1. Points (ii) and (iii) require
discussion of V,; and V. The floating potential, V%, is defined as that potential at
which the net current is zero to the probe when it electrically floats in the plasma.
A probe will achieve a potential with respect to the plasma and walls depending
upon the probe temperature, resistance to ground (R ), and the nature of the
current flux to it. The potential difference between the probe and walls, Vj,, is
given by the intersection of the load line voltage, Vp,, = Vi = IRy, with its
Langmuir current-voltage characteristic curve, as shown in Figure 8.2. The slope
of the load line voltage curve is P%v so as Ry — oo, the intersection occurs at
Vpr =V}, and as Rp — 0, the intersection is at V},, = 0; this is the case where the
probe is shorted to ground. Thus, for 0 < Ry, < oo, one has 0 <| V},, |[<| V} |, and
in particular, if Vy < 0, then V;y <V}, < 0. Point (iii) is established.
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In an isothermal, Maxwellian plasma the electron thermal speed is much greater
than the ion thermal speed (ve =,/ %vi > v;), so a probe at V,; will collect more

electron than ion current. (Here v, (;) is the average electron (ion) thermal speed
and m, (;) is the electron (ion) mass.) However, if the probe is allowed to float
to V¢, it will charge negatively, so as to reflect electron flux, in order to achieve
the required condition of zero net current; in other words, V; < V. (To good
approximation, it can be shown that, for isothermal plasma systems such as this,
the relationship between Vy and V; is given by: Vi — Vj ~ 2—{[]11(2%%) —1].
This quantity is negative definite. Here T is temperature, k is the Boltzmann
constant.) When the probe is self-emissive — as it may be here — then Vy ~ V.
Point (ii) is established.

The condition for Point (iv) — that V},; < 0 — is met ostensibly by many plasma
systems. (For steady-state systems such as this, one may often estimate the V
by equating the current leaving the walls to the current received by the walls.)
For example, in the electron-rich plasma in the original paradox, V,, is inherently
negative. With V},; < 0, this model system meets the restricted requirement for
second law violation (V,; < 0). And, since V; < V,,; < 0, the general requirement
(V¢ #0) is also met.

Laboratory experiments have corroborated most salient aspects of the paradox-
ical system. Countless Langmuir probe and emissive probe measurements support
Vi, Vol, Vpr # 0 and Vy < V,; for most plasmas, many of these at or near local
thermal equilibrium and many generated by purely thermal processes. Notable
among these are double-ended Q-machine plasmas [7, 5]. These are created by
surface ionization of alkali metal (e.g., K, Rb, Cs) or alkali earth metals (e.g.,
Sr, Ba) on heated (7" > 2000K) high work function refractory metals (e.g., Ta,
W, Re). These plasmas are generated thermally and are effectively in equilibrium
with their walls. In the experiments to follow, it will be shown that, using purely
thermal plasma generation, a non-magnetized plasma, in near thermal equilibrium
blackbody cavity environments can support non-zero, steady-state probe-wall po-
tentials occurred over a wide range of temperatures (Teq, < 2060 K) regardless of
the composition of the cavity walls, probes, electrical loads or leads; and it is shown
that steady-state voltage V1, can be supported across a load — the crux condition
for second law violation. Of course, these experiments themselves did not violate
the second law because the entropy produced by the dissipative load were minute
compared with the entropy produced in conducting the experiments. However,
were the load conservative, were the universe at high temperature (~ 2000 K),
were no vacuum, ancillary apparatus, or experimenter required, then it appears
that the entropy production rate for the experiments should be negative.

8.2.2 Experiment [1]

8.2.2.1 Apparatus and Protocol
Experiments were conducted approximating the paradoxical system; a schematic
of the apparatus is given in Figure 8.3. The blackbody cavity and heat bath were
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approximated by a heated, hollow 5 cm diameter, 5 cm high molybdenum cylinder,
with wall thickness 0.64 cm. The diameter and height of the cylinder interior were
3.8 cm and 4.7 cm, respectively. The cavity was heated by a continuous, alumina-
insulated tantalum filament interstrung 16 times through the cylinder walls with
uniform angular spacings, radially half-way between the cylinder inner and outer
walls. Flat, thin molybdenum caps (0.15 cm thick) sealed the cylinder ends; the
top cap had a 0.64 cm hole through which probes were inserted into the cavity.
For all but one experiment the cavity was lined with thin tantalum foil (0.025 cm
thick). From the perspective of the probe, the experimental cavity walls represent
both the idealized cavity walls and infinite heat bath.

Cavity temperatures were standardly inferred with a type C thermocouple (5%
W-Re/ 26% W-Re) buried at the radial and vertical midpoint of the oven wall,
roughly equidistant between two heater elements and the cavity’s interior and
exterior walls (point A in Figure 8.3a). Spatial resolution was taken to be the
sizes of the thermocouple tips, roughly 4mm. Estimates of temperature variations
within the cavity were made by comparing simultaneous measurements from three
thermocouples located at points A,B, and C in Figure 8.3a, specifically, at A)
the standard wall position; B) the geometric center of the blackbody cavity, where
probes were typically situated; and C) the entry hole for the probe. Over the heat-
ing/cooling cycle, the wall (point A) and cavity center (point B) temperatures were
similar, with the center temperature consistently lower than the walls, typically
by 5-50 K. Over much of the temperature range where probes displayed non-zero
potential with respect to the walls (probe-wall voltage, Vpy # 0) they were in
agreement within the rated experimental uncertainty of the thermocouples (+ 1%).
The thermocouple at point C is believed to have measured the coolest region of
the cavity, near the probe entry hole. Here heat could escape via conduction along
the probe’s alumina support rod or via blackbody radiation directly out through
the hole. Point C temperatures were 70 - 100 K below wall temperature (point
A) over the nonzero-Vpy, temperature ranges. Thermocouple measurements were
corroborated with optical pyrometer measurements and agreed well with electrical
power heating requirements, given the thermal insulation used around the cavity.

Cavity temperatures could be varied between 290 K and 2060 K; higher temper-
atures melted the alumina insulation tubes. Good thermal stability was achieved;
e.g., at 1400 K temperature drift could be held to 12 K over 30 minutes for an
average temperature variation of 7 x 1072 K/sec. The cavity was insulated by
series of 10 nested heat shields. The probe was guided through the heat shields
into the cavity by a small-bore (0.64 cm ID) tantalum tube which was physically,
thermally, and electrically anchored to the cavity walls and cavity tantalum inner
lining. The entire assembly was housed in a cylindrical vacuum vessel (L = 61
cm, Dia = 28 cm) and operated at base pressure of 1-2 x107% torr. Pressure
measurements inside the cavity were not made.

Probes consisted of small, refractory metal strips or wires exposed to the cavity
environment. Probe materials tested included tungsten (work function, ® = 4.5
V), tantalum (& = 4.2 V), molybdenum (& = 4.2 V), hafnium (& = 3.5 V), and
lanthanum hexaboride (® = 2.66 V) on tantalum. These were chosen for their
refractory natures and because their work functions were either greater than, less
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Figure 8.3: Schematic of Plasma I experimental apparatus. a) Physical schematic;
b) Equivalent circuit for apparatus; c) Norton-equivalent circuit for apparatus.
Dashed lines indicate the high-temperature region of the apparatus. Notation:
probe (PR), load resistor (Ry), variable resistor (Ryq), voltmeter (V).

than, and equal to that of the cavity walls. The probes were supported by multi-
hole, 0.25 cm diameter, high-purity alumina rods (Coors AD998). Zirconia cement
(Aremco 516) was sometimes used for local insulation. All probe and thermocouple
alumina support rods had marginal physical thermal contact with cavity metal
surfaces and were heated primarily by radiation. Several probe shapes and sizes
were tried, varying from small cylinders (L. = 0.15 cm, Dia = 0.025 c¢m) to large
rectangles (L = 1.4 cm, W = 0.3 cm). The ratio of probe surface area, (SA)p, to
cavity surface area, (SA)cqy, was small; 2.1 x 1074 < % <1.5x1072.

Simulated loads, Ry, consisting of length or coils of fine wire (either 0.013 cm
diameter tantalum or 0.005 cm diameter tungsten) were connected to the probes
and housed in the cavity as shown in Figure 8.3a. Surface areas of load resistors,
(SA)R, were less than that of the probes; surface area ratios were varied as 0.02 <
Egﬁ;i < 0.6. Load resistances increased with increased cavity temperature due
to the temperature dependence of bulk resistivity. In situ measurements of Ry,
agreed within a factor of two with predictions based on resistor dimensions and
bulk resistivity.

The probe and diagnostic circuit were simple and passive (See Figure 8.3a).
The primary measurements for these experiments were of the potential difference
between the probe and wall, called Vpy,, and the electrical resistance between
the probe and wall, called Rpy,. Both varied with cavity temperature. Vpy and
Rpw could be inferred from voltage drops across the variable resistor, Ryq.. (The
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value of R,q. could be varied as 02 < Ry, < 2M€.) From measurements of
Vpw and Rpw the current flowing from the probe or through the load resistor

2
could be calculated via Ohm’s law and from these load power drops, P;, = Vé’;",
and entropy production rates, % = %, could be estimated. Passive micro-

ammeters and active ohmmeters were used regularly to verify the measurements
of the passive circuit. The equivalent circuit for the probe, load, diagnostic circuit,
and Rpyw is given in Figure 8.3b.

The probe and wall, if they reside at different potentials, constitute the ter-
minals of a battery whose output voltage is Vpy,. The battery is current-limited
by the net current it receives from the plasma; for an electron-rich plasma, the
current limit, Ij;,, is roughly I}, ~ nev.((SA)p + (SA)r), where the variables
have been defined previously. In light of this, a revised, Norton-equivalent circuit
is given for the apparatus in Figure 8.3c.

Rpw was strongly dependent on temperature. As the cavity was heated and
thermionic electron emission and plasma production began, Rpyy fell dramatically,
from values greater than 300 k(2 for T < 1000 K to values as low as 40 2 at T
= 2060 K. Electrical conductance through the probe’s alumina support rod was
excluded as the primary cause of this resistance decrease; plasma formation was
probably the primary cause.

Care was taken to avoid the several possible solid state thermoelectric effects —
the potentially most serious of which was considered to be the Seebeck effect — that
could confound plasma-related voltage and current measurements. For example,
all diagnostic and grounding wires leading out the cavity and vacuum vessel were
made of pure elemental metals, usually matched sets of tantalum or tungsten.
They were brought to a single isothermal reference block outside the vacuum
vessel (T = 293 K) before continuing as copper wires to the diagnostic circuit. In
an extreme cases, Experiments 7 and 8 (Table 8.1), the probe, load resistor, cavity
walls, diagnostic and grounding wires from the cavity to the diagnostic’s thermal
reservoir were all composed of tantalum. By symmetry, one expected little or
no thermoelectric potential to develop between probe and walls, yet still sizable
potentials (> 700 mV) were observed, similarly to all other metal combinations.

Atomic potassium was introduced into the cavity using an atomic beam oven
directed into the cavity as shown in Figure 8.3a. Since the ionization potential of
potassium (LE. = 4.34 V) is close to the work function of the tantalum cavity walls
(® = 4.2 V), atomic potassium was ionized with high probability in the heated
cavity. For example, at 1500 K the ionization probability of potassium on tantalum
is roughly 0.4. Thus, introducing potassium was a convenient way to boost cavity
plasma density while introducing only a small population of neutrals. Density was
roughly estimated by noting when the plasma potential switched polarity, this
corresponding to the critical density as given in (8.2).

8.2.2.2 Results and Interpretation|i]
Several different simulated paradoxical systems were investigated. Table 8.1 sum-
marizes by experiment the elemental compositions of the experimental compo-
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EXP| C P R L | Toas(B)| P T | Vinaz/Vinin(mV)
1 |Ta |Ta ———| Ta|2060 |--- 120/ — 65
2 | Ta LaBs/Ta| — — | Ta|1980 |—--- 140/ — 64
3 | Ta w —— w0 |--- 206/ — 100
4 | Ta w w |wlis |--- 47/ - 25
5 | Ta w w |wlo |k 405/ — 400
6 | Ta Ta w |wlieso |k © 385/ —280
7 | Te Ta Ta |Tal1750 |K 56/ — 720
8 | Tea Ta Ta |Tal|1580 |K 25/ — 330
9 Ta Ta,Mo | ———| Ta|1650 - 156/ — 348
W,Hf
10 | Mo/Ta| Ta,Hf | ———|Ta|1860 |——- 410/ — 374
w

Table 8.1: Summary of experimental parameters for Plasma I: Experiment number
(EXP); Chemical composition of cavity (C), probe (P), load resistor (R), and
electrical leads (L); Maximum temperature achieved during experiment (7}, (K));
Plasma type (P T); Maximum and mininimum Vpy achieved during experiment
(Vmaw/vmzn(mv))
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Figure 8.4: Experimental probe-wall voltage, Vpy,, versus temperature curve for
Experiment 7. Arrows indicate direction of increasing time. Explanation of al-
phabetic labeling given in text.

nents, the maximum achieved cavity temperatures, maximum and minimum Vpy,
and ionizable species introduced into the cavity. All systems displayed qualitatively
similar behaviors, conforming to expectations for the theoretical paradoxical sys-
tem. As a means by which to discuss typical system behavior, a representative
case, Experiment 7 in Table 8.1, will be described in detail.

In Experiment 7, the cavity walls, probe ((SA)pr = 7 x 1075 m?), load re-
sistor ((SA)r = 4 x 107> m?) were all tantalum, and leads out of the cavity to
the isothermal reference reservoir were also all constructed from tantalum. Figure
8.4 depicts the Vpy versus cavity temperature curve for Run 1, Day 3. Arrows
indicate the direction of increasing time. The following are descriptions and in-
terpretations of the various intervals of the thermal cycle alphabetized in Figure
8.4.

Interval A—B  (Duration 12 minutes): The cavity is electrically
heated and the tantalum probe begins to develop a negative potential
with respect to the walls at about 1000K, probably due to electron
thermionic emission and/or plasma production.

Interval B—C  (Duration 7 minutes): The cavity is heated to 1475
K, monotonically reaching a minimum potential of -260mV.

Interval C—D  (Duration 7 minutes): Heating power to the cavity
is reduced from 285 W to 170 W; the cavity cools.

Point D (Duration 25 minutes): The cavity temperature is stabi-
lized at 1430 - 1450 K for roughly 20 minutes. Vpy, also stabilizes at
approximately -150mV, varying only 5 % during this time. (Notably,
here ¢Vpw ~ kT.) This interval is significant because its quasi-steady-
state condition appears to approximate the critical requirement of the
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paradoxical system that a voltage be maintained across the load in a
steady state fashion. The potassium oven is heated.

Interval D—E  (Duration less than 15 seconds): Vpy undergoes a
sudden and rapid increase at the stable temperature 1450K, varying
from -150mV to +56 mV in an interval of less than 15 seconds, proba-
bly due to a sudden surge of potassium atoms. The density, estimated
to be n. ~ 10'2m~3, agrees fairly well with the estimated atomic flux
output from the potassium oven.

Interval E—F  (Duration 10 - 12 minutes): The potassium oven
cools. Vpy decreases from 56mV to -20mV.

Interval F—G—H (Duration 40 minutes): Cavity heating power
is ceased, cavity temperature decreases and Vpy reaches a minimum
of -45mV, then increases to zero.

No experiment in Table 8.1, in itself, violated the second law because for all
experiments the power dropped and the entropy produced by the load resistor,
Ry, were minute compared with the power required and entropy produced in
carrying out the experiments. For example, during Experiment 7 at temperature
T = 1710 K, the load resistance and current were measured to be Ry, = 3.3Q2 and
I;, = 17.5uA. The power drop across Ry and the entropy production rate were
P, =9.3x1071" W and 9L = 5.4x10~!* W/K. Presumably, were the load purely
conservative the entropy production rate would have been negative. On the other
hand, substantially more power was required just to carry out the experiment; this
included the electrical power to heat the cavity (~ 500 W), to operate the vacuum
pumps and ancillary apparatus (~ 600 W), and to animate the experimenter
(~ 100 W). If the roughly 1200 W used to power the experiment is exhausted
ultimately into the 2.73 K universal blackbody, then the net entropy production for
the experiment was roughly ds;l% ~ 400 W/K. This positive entropy production
rate is roughly 10' times greater than the presumed negative production rate from
a conservative 3.3 ) cavity load. However, were the load conservative, were the
universe at T = 1710 K, were no vacuum, ancillary apparatus, or experimenter
required, then it appears that the entropy production rate for the experiment
would have been negative: dsdet” = % = —5.4 x 107 W/K < 0. This negative
entropy production is small, but significant in the context of the paradox.

In summary, non-zero probe-wall potentials, Vpyy, were observed over a wide
range of temperatures (Teqo < 2060 K) for all systems tested, regardless of the
composition of the cavity walls (Ta or Mo/Ta), probes (Ta, W, Mo, Hf, or LaBg),
load resistors (Ta or W), or electrical leads (Ta, W). All probes demonstrated
current flows to ground. The behavior of Vpw, Rpw, and Ipy versus cavity
temperature can be explained in terms of plasma effects. Quasi-steady-state Vpy,
and cavity conditions were demonstrated. Estimated power drops in Ry and
entropy production rates were small, but significant in the context of the paradox.
Finally, it was shown that the experiments, themselves, did not violate the second
law.

These experiments did not perfectly simulate the idealized paradoxical system.
Experimental non-idealities included: i) extreme temperature differences between




Chapter 8: Plasma Paradoxes 251

the cavity and exterior environment (‘universal heat bath’); ii) spatial and tempo-
ral temperature variations within the cavity; iii) influx and efflux of particles from
the cavity; iv) possibly unaccounted for or unwanted thermoelectric potentials;
and v) thermal and chemical degradation of the cavity contents. The experi-
ment has generated controversy (§8.4). Detailed analysis indicates that, although
these non-idealities may degrade the comparison of the experimental results to
theory, they probably do not invalidate the primary paradoxical effect, namely,
quasi-steady-state, non-zero probe-wall potential. It would be helpful if similar
experiments could be conducted near room temperature since many experimental
non-idealities might be ameliorated. Unfortunately, this would probably require
either materials with exceptionally low work functions or plasma species with ex-
ceptionally low ionization energies.

8.3 Plasma II System

8.3.1 Theory [2]

The Plasma II challenge is the plasma analog to the chemical challenge (Chap-
ter 7). Both rely on differential gas-surface reactions to create a pressure differ-
ence between two surface under blackbody cavity conditions and both operate in
the high-temperature, long mean free path regime. However, unlike the chemi-
cal system, Plasma II makes use of the potential gradients of the Debye sheath
to accelerate ions and electrons to superthermal speeds (¢V > kT') and thereby
magnify specific impulses over what can be achieved using neutrals gas alone. In
this respect it is like Plasma I, which also relies on sheaths.

The Plasma II system consists of a frictionless, two-sided piston in a high-
temperature, plasma-filled blackbody cavity surrounded by a heat bath (Figure
8.5). Apposing piston faces are surfaced with different work function materials.
Owing to differential neutral, electronic, and ionic emissions from the different
materials, a steady-state pressure difference is sustained between the piston faces
which, in principle, can be exploited to do work. In order to satisfy the first law, the
work performed by the piston must be derived ultimately from the heat bath, but
this leads to an apparent contradiction of the second law. Laboratory experiments
testing a critical aspect of the paradox — that different surfaces can simultaneously
thermionically emit distinctly in a steady-state fashion in a single blackbody en-
vironment — corroborate theoretical predictions. Again, it is strongly emphasized
that these experiments did not, themselves, violate the second law; they served
only to verify contributing high-temperature thermodynamic behaviors.

Consider a universe consisting of a blackbody cavity surrounded by an infinite,
high-temperature heat bath. The cavity interior is bathed in blackbody radiation
and a low-density ionizable gas, B. Introduce into the cavity a frictionless, two-
sided piston as shown in Figure 8.5. The piston is electrically and thermally
grounded to the walls, as are the walls to the heat bath. Particles freely move
between sides of the cavity partitioned by the piston (it may be perforated.). The
majority of the piston is of identical composition as the walls (surface type 1),



252 Challenges to the Second Law

HEAT BATH

Figure 8.5: Schematic of Plasma II system.

however, on one piston face is a small patch having a different work function
(surface type 2). It is small in the sense that it is relatively unperturbing to global
plasma properties. The work functions of surface types 1 and 2 and the ionization
potential of B are ordered as: @, 2I.P > P,

The following plasma model is assumed:

1) Plasma is created by a combination of Richardson emission and sur-
face ionization of B. Surface ionization and recombination are governed
by the Langmuir-Saha relation. Richardson emission greatly exceeds
ion emission for all surfaces, giving an electron-rich plasma with a neg-
ative plasma potential. Secondary electron emission is negligible.

2) Particles come into thermal equilibrium with the surface they con-
tact, leaving as half-Maxwellians.

3) The plasma is effectively collisionless for charged and neutral particle-
particle collisions.

4) The Debye length is short compared with plasma dimensions.

5) The plasma is quasi-neutral (n, ~ n;).

6) The plasma is in a stationary state.

The following nomenclature from [2] will be used: j is particle flux density
(m~2s71) and F is momentum flux density, pressure, (Nm~2); superscript right
arrow (—) indicates a flux away from a surface and («+) indicates flux toward
a surface (here, arrows do not signify vectors); subscripts n,i,e,1, and 2 refer to
neutral and ionic B, electrons, and surfaces 1 and 2, respectively; subscript k refers
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to an arbitrary surface; and S1 and S2 refer to surfaces 1 and 2. The x coordinate
is the direction perpendicular to a surface.

Surface-ionization has been extensively studied both theoretically and exper-
imentally [9, 10, 11], as have surface-ionized plasmas, particularly in the con-
text of Q-machines [5, 12, 13] and thermionic power generators [14, 15]. In fact,
the present plasma can be roughly considered to be an unmagnetized, three-
dimensional Q-plasma with a sliding hot plate. The theory presented here draws
heavily from that of Q-plasmas.

If thermal equilibrium holds, the fractional ionization of B leaving a surface
(even with a sheath) is given by the Langmuir-Saha relation:

ni ﬂexp[e(q) —I.P)

g T 53

where 7+ and 2 are the ratio of densities and the ratio of statistical weights for
ionized and neutral B, respectively. The ionization probability is:

7 In e(I.P.—®) . _,
P, = — 1422 A S ——A 8.4
= ey (5.9
The recombination (neutralization) probability is: P, = o = 1— P, From

the principle of detailed balance, one can infer that, in steaay state:

—

;i,k =P jB,k (8-5)
and _
jn,k = Pn,k: jB,k‘v (86)

—

where j g is the total flux density of B onto surface k: j g =71 + J k-
The electron current density from surface k with a plasma is given by:

- eV, 9 edy, eV, Meque
Jeb = Jr.k €xp( ) = AT~ exp( T ) exp( T )= 1

kT

(8.7)

Here Jg i is the Richardson current density, V,,; is the plasma potential (negative
for an electron-rich plasma), T is temperature, k is the Boltzmann constant, v, is
the average electron thermal speed (T, = \/8kT/mm,) for a Maxwellian distribu-
tion), ¢ is an electronic charge (absolute value), m, is the electron mass, n. is the
electron number density, and A is the Richardson constant for the surface with a
value of about 6-12 x10° (A/m2K?) for pure metals.

The physical processes leading to plasma formation are straightforward: elec-
trons are “boiled” out of the metal (Richardson emission) and ions, created by
surface ionization, are accelerated off the metal surface by the electron negative
space charge. Ions, in turn, ease the electrons’ space charge impediment, thus re-
leasing a quasi-neutral plasma from the surface. Actually, if V}; < 0, this Q-plasma
is essentially a charge-neutralized, low-energy ion beam leaving the surface. The
ions are a velocity-space-compressed, drifting, half-Maxwellian and the electrons
are an essentially thermal half-Maxwellian. In Q-machines, ion drift speeds can
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be several time the average ion thermal speed, but still much less than the average
electron thermal speed, i.e., U; < vg K Ue.

The ordering ®o 2 IP. > &, allows, with appropriate plasma density and
temperature, and surface areas ((SA); and (SA)z2), the following additional as-
sumptions for the plasma system:

i) Surface 2 ionizes B well and recombines it poorly (jng < 3’12 ~Jn2)

while surface 1 ionizes B poorly, but recombines B well (]21 < jnl ~Jni)
In fact, the ion current density from S2 exceeds that from S1 by a fac-

P .= P
tor of P[_j‘, that is, (ji o ~ Pif]m.)
ii) Since S1 dominates plasma properties by virtue of its greater surface

area ((SA)1 > (SA)2), and in light of result (i) above, the net flux of

B to any surface is predominantly neutral B: (j g x~J x> 7 i x)-

iii) Surface 2 will be relatively unperturbing to cavity plasma condi-
tions if the S2 ion current into the plasma is much less than the total
S1 ion current; that is, if j; 2(SA)2 < j;,1(SA)1. This condition can
Piz o (SA)

Pi,l (SA)2

iv) The neutral flux onto S1, onto S2, and off of S1 are all roughly the

be stated equivalently as:

same: (jnl ~Jp1~Jna) Since S2 ionizes well, jn’z is smaller than

these by the factor i?
v) The electron emission off S1 exceeds that off S2 by a factor exp[%]z

(.;e,l = exp[(%k_Tq)l)]jeyg). Since S1 dominates global plasma proper-

ties, the thermal electron current to each surface should be roughly

— —

the same, that is, (j .1~ ..2)-

Because of the differences between electronic, ionic, and neutral masses and
the different currents of each leaving S1 and S2, a steady-state pressure difference
can be supported between piston faces. A comparison will be made of momentum
flux densities to and from surface 2 and the corresponding patch of surface 1
diametrically through on the other side of the piston (See Figure 8.5). If these are
different, the pressure difference, AF = F» — F7 ,in principle, can be exploited to
do work. Fluxes will be measured through Gaussian surfaces which enclose the
piston surfaces and their plasma sheaths out to where their potential gradients
vanish in the plasma. Note that the plasma locally outside S2 may be different
from that outside S1, but should revert to the S1-type within a few Debye lengths.

In regard to momentum fluxes to any surface, if S2 is effectively unperturb-
ing to plasma properties and if the piston moves slowly (vVpiston < Te,in), then
the neutral, electronic, and ionic momentum fluxes onto S1 and S2 should be es-
sentially the same, and therefore, should exert no net pressure difference on the

piston, A F. It is only departing particle currents that contribute to a net pressure
difference.

Neutrals: As expected for an ideal gas, the average pressure difference between
S1 and S2 patches due to departing neutrals, AF,,, should be:
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n, kT
2
where n,, is the average cavity neutral number density. The factor of % arises since

only departing neutrals contribute to the pressure. In the limit that (P; ;1 < P;2),
one can write roughly

AF, = AF, 5 —AF, 1 = (Pi1 — P;2) (8.8)

PLankT
2
Electrons: The velocity distribution function for Richardson electrons should

be half-Maxwellian, but modified to account for the retarding negative plasma
potential. Just outside the Gaussian surface, it is:

2
- [ m mu
fer(Ve) = Ne 27rkeT exp[—np] exp[— 2k;f]; vy >0 (8.10)

where 1, = |qu7'€l | and ne = 4‘]2”" s and Jg is given in (8.7). The velocity

distributions for S1 and S2 are distinguished only by their work functions which
fold into Jg . The electron current leaving each surface may be written:

AF;L ~ — (8.9)

-

.
ek = %exp[—np] (8.11)

The plasma electron density, 7. ,, should be n., = ne 1 exp[—n,], which is twice
that calculated from (8.10) since electrons also originate from the opposite wall.
The average pressure difference between S1 and S2 due to electron fluxes is

= T M, ™ - -
AF‘e = Z = GXP[—Up][JR,z - JR,l] = Zmeﬁe(]eﬂ - ]e,l) (812)

In the limit that fe,l > je,z, this is roughly

— s _JRJ ™ _=
AF, = ——m.Tc—= exp[—np] = ——MeTeje,1- (8.13)
4 q 4
Ions: The ion velocity distribution function just outside the Gaussian surface in
an electron-rich plasma should be:

m; m;v2 o |24V

kT expln,] exp[— SKT l; Uy > (8.14)

Fik(va) = ni g o

—

45 47 . . . . .
where n; 1, = P i, UJ_BB ~ P U]_ﬂ = P, 1n,, since B exists primarily as neutrals in

the cavity. Since the ions are accelerated through a negative sheath, the lowest

: L 24V,
velocity for plasma ions is v = /—=L2L,
my

The average ionic pressure difference, AF;, is:

— - - Ny Uy o Uz Ji,k\Vx
AF; =mivi(Ji2 — Jin) = miT(Pz’,Q - Pz‘,l)/ Mdvx (8.15)
\/577}, ik
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If —qVp > kT (as is typical for a Q-plasma), then with regard to the momentum
flux, the ions can be considered roughly a mono-energetic beam, and if P; o > P, 1,

then AF, is roughly
- Uy [ 2
4 m;

Although S2 emits a disproportionate ion current, the excess ions are effectively
neutralized on a type-1 surface after a single pass through the plasma. The plasma
potential is obtained through the quasi-neutrality condition, n;, ~ n.,, or by
solving (8.7) for V.

Combining (8,12,15), the net pressure difference between S1 and S2 is

Pi _Pi nnk‘T T MeVe
AFy = Tt ZBDbL R el (817
miw(pmfpijl)/ e fin(Va) g
4 \/5771) ni7k

Under the approximations given for (8.9, 8.13, and 8.16), the net pressure
difference between the piston patches is roughly

P;on kT mm.v, Ny Un [ 2qV,
AFnet =~ — = 9 - Z q JR,I eXp[_np] + m; 4 ‘Pi,Q - fnpl (818)
(2

Except for very specific plasma parameters, AF,.; should be non-zero. In fact,
examining (8.17), it seems that for AF,,.; to vanish, both the Richardson current
densities and ionization probabilities for S1 and S2 must be identical; this requires
work functions for S1 and S2 be identical. Except for very special choices of S1
and S2 (e.g., S1 and S2 the same material), this is unlikely.

This plasma-mechanical system has similarities to the Plasma I system. In the
latter, a non-zero plasma potential was exploited to do work via a spontaneous
net current flow from a plasma probe, through a load to ground. Spontaneous
organization of random current was given as the origin of the entropy decrease. In
the present system, again a non-zero plasma potential is exploited, but here to help
create a pressure asymmetry on a piston. This asymmetric pressure is the analog
of the asymmetric current through the load in Plasma I; in fact, both may be
viewed as succeeding via asymmetric momentum fluxes (§10.1.1). In the present
system, however, the plasma potential is not essential; even were it absent the
system should operate still. Notice, in (8.17) or (8.18), if V},; = 0, the net pressure
on the piston remains non-zero. At a deeper level, this is because equipartition of
energy does not imply equipartition of linear momentum. If a neutral B arrives at
a surface, thermally equilibrates and leaves, on average it will carry away ~ kT of
energy and average linear momentum p = m,0,. On the other hand, if it leaves
as a thermal ion and an electron, each independently leaves with an average of
~ kT of energy and with combined average momentum of p = m;v; + m.v. which
will be greater than the momentum of the neutral. So, if a surface (S2) dissociates
a species (B) more efficiently than another surface (S1), and if all particles leave
thermally, a greater momentum flux density leaves S2; hence by conservation of
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linear momentum, a greater pressure is exerted on it. In this respect, Plasma II
resembles the chemical paradox (Chapter 7) in which chemically distinct surfaces
render disproportionate products for the dissociation reaction (2A = As). As
such, Plasma II can be seen a hybrid between Plasma I and chemical systems.

The Plasma II pressure effect should be observable experimentally. Consider
a hypothetical system much like that in Figure 8.5 set to the following initial
conditions: a hollow hafnium cylinder (® = 3.5 V, L = 50 c¢m, Dia = 50 cm)
containing a low-friction, hafnium piston with a small circular patch of tungsten
(P = 4.5 V, Dia = 1 c¢m), immersed in a heat bath (T = 2200 K). The neutral
density of ionizable gas, potassium (I.P. = 4.3 eV), is established at n,, = 5.4x 10
m™3.

Under these initial conditions, the plasma model assumed above is obtained.
The plasma is collisionless (n; = 4 x 103 m™3), electron-rich (V,; = —2.1 V) and
its Debye length is short compared with plasma dimensions (Ap = 5 x 1072 cm).
Surface 2 ionizes potassium well and Richardson emits poorly with the reverse
true for surface 1; ion and electron current densities are each disparate by factors
of at least 80 between S1 and S2. Surface 2 is relatively unperturbing to global
plasma properties since its production of ions is far less than that of S1; that is,

P,

2 x 10* ~ Esﬁ;; > Pf’f ~ 80. Neutrals dominate the potassium particle flux to

s
any surface (% ~ 40). A summary of hypothetical system parameters is given in

Table 8.2.

The net pressure difference between S1 and S2 patches should be roughly AF ~
1.3 x 10~* Pa, dominated by ionic pressure, so the piston should move to the left.
Were the piston to move at roughly 5% of the neutral thermal speed, it could
deliver about 6 x 10~7 W of power, a value comparable to that required for a 1 mg
ant to climb a wall with speed 2 cm/sec. This mechanical power is over 10'? times
less than the blackbody radiative power from cavity surfaces, so the mechanical
work drawn should have negligible effect of the cavity properties.

This paradoxical effect is small but robust; many system constraints can be
relaxed without destroying it. For instance, it can be shown that the plasma suc-
cessfully can be made ion-rich, collisional, or subject to some volume ionization.
Viable variations can be devised by adjusting system geometry, work functions,
ionization potentials and densities of the working gas, conductivity of parts, and
groundings. For example, the hypothetical system would be successful if potas-
sium were replaced with sodium and tungsten replaced with rhenium (adjusting
the neutral density so as to achieve the same plasma density and potential). Or
the need to reverse the piston stroke could be obviated by running it in a hollow
toroidal chamber, or by replacing it with a radiometer-like system with S1 and S2
vane faces (as in Figure 7.1).
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Cavity Length,L 0.5 m
Cavity Diameter,D, 0.5m

S2 Patch Diameter,D, 10~2m
Work Function S1 (Hf),®xf 3.5V
Surface Area S1,(SA4), 1.6m?
Work Function S2 (W),®ow 4.5V
Surface Area S2,(SA); 8 x 10~5m?
Ionization Potential (K),I.P. 4.3eV

Cavity Temperature, T 2200K
Richardson Constant, A 6 x 10°A/m’K?
Statistical Weight,(-"g-'-‘_‘-) K 2

Cavity Neutral Density,n, 5.4 x 10*m—3
S1 Ionization Probability,P; 73 %1073

S2 Ionization Probability,P; o 0.59

Plasma Density,(n.,p) 4 x 103m—3
Plasma Potential,Vy -2.1V

Debye Length,Ap 5x 10~*m

Charge-Charge Collision Length, ~ 30m
Neutral-Neutral Collision Length, ~ 900m
Neutral Differential Pressure,AF, @ —4.8 x 10~5Pa
Electronic Differential Pressure,AF, —6.3 x 10~7Pa
Tonic Differential Pressure,AF; +1.8 x 10~4Pa
Net Differential Pressure, AFp.; +1.3 x 10~4Pa
Output Power (vpiston = 0.055) 6x 10°"W

Table 8.2: Summary of system parameters for hypothetical Plasma II system.

8.3.2 Experimental

8.3.2.1 Apparatus and Protocol

The primary operating criterion for Plasma II is this: that different materials si-
multaneously sustain different steady-state pressures over their surfaces (due to
different ionic, electronic, and neutral emissions) in a single blackbody environ-
ment. Solid state and plasma theory and experiments strongly corroborate this
hypothesis, but there does not appear to be any unambiguous experimental evi-
dence for it.

Piston or radiometer experiments could be performed, but these are likely
to be problematic. (Sheehan performed several radiometer-torsion balance ex-
periments under high-temperature, high-vacuum conditions, but the results were
deemed inconclusive due to confounding effects of outgassing, temperature, and
thermal gradients.) A double-ended Q-machine with equipotential, equithermal
hot plates of varied compositions could serve as a good two-dimensional model
for the paradoxical system. Electron and ion velocity distributions could be mea-
sured with standard directional energy analysers (neutrals might be more difficult
to diagnose) and pressure from each surface calculated quantitatively. Anecdo-
tal accounts abound of spotty emission from Q-machine hot plates, suggesting
thermionic emission can vary from surface to surface at a single temperature.

The experiments reported here did not measure differential pressures; differ-
ential thermionic currents were inferred from pairs of similar and dissimilar sub-
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Figure 8.6: Experimental apparatus for tests of Plasma II.

stances under blackbody plasma conditions. In particular, tantalum, hafnium, and
zirconia (ZrOs) were compared.

Differential current measurements were made in an apparatus similar to that
described in detail for Plasma I in §8.2. A schematic is given in Figure 8.6. The
blackbody cavity and heat bath were approximated by a heated, hollow 5 cm
diameter, 5 cm high molybdenum cylinder, with interior diameter and height of
3.8 and 4.7 cm, respectively. The cavity was lined with thin tantulum foil and
heated by 16 tantalum heater wires buried at equidistant radial locations in the
cavity wall. Cavity temperature were taken with a Type C thermocouple buried
centrally in the cavity wall.

Cavity temperatures could be varied between 290 and 2060 K. Good thermal
stability was achieved; e.g., at 1400 K temperature drift could be held to 12 K over
30 minutes for an average temperature variation of 7x 1073 K/sec. The cavity was
insulated by a series of ten nested heat shields. The entire assembly was housed
in a cylindrical vacuum vessel (L. = 61 cm, diam = 28 cm) and operated at a base
pressure of 4x 1076 Torr. Pressure measurements inside the cavity were not made.
Cavity temperatures were probably too low for significant volume ionization, so it
is assumed plasma was created primarily by thermionic emission.

Thermionic emissive materials (S1 and S2 in Figure 8.6) in the form of small
square plates (1.6 x 1.6 cm) were supported at the cavity center, as shown in Figure
8.6 These were electrically grounded to the cavity walls, but electrically insulated
from each other and from the probes (P1 and P2 in Figure 8.6) by thin layers (1.5
mm thick) of zirconia cloth. Small windows (4 mm x 4 mm) were cut in the center
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of the cloth to allow direct, well-controlled exposure of the emissive surface to its
probe. The probes consisted of thin tantalum squares (1.2 x 1.2 cm) centered and
sandwiched between S1 and S2. They, also, were electrically insulated from each
other by 1.5 mm thick zirconia cloth. Probe leads were fine tantalum wires.

The diagnostic circuit was simple and passive. The primary measurements
were of the potential difference between the probes and ground, called V,4, and
the electrical resistance between the probe and ground, called R,,. Both var-
ied with cavity temperature. Here V,, and R,, could be inferred from voltage
drops across the variable resistor, R,q,. (The value of R, could be varied as
0 < Ryar < 2MQ).) From measurements of V,, and R, the current flowing from
the probe, I,4, could be inferred from Ohm’s law. The value of I,,, should be dic-
tated by its local plasma environment, therefore, strongly dictated by the emissive
characteristics of its nearest surface, either S1 or S2.

Surfaces were tested in pairs in order to make direct comparisons between
surface types under the most similar plasma blackbody conditions possible. Ab-
solute measurements of plasma currents and properties could not be made due to
the emissive nature of the probes — self-emissive probes are unsuitable for stan-
dard Langmuir probe measurements [6]. Furthermore, at elevated temperatures
the electrical characteristics of S1 and S2 became increasingly coupled due to
increased plasma conductivity and bulk conductivity of the zirconia insulation.
Since absolute measurements of plasma currents were suspect, the salient exper-
imental quantity was taken to be the difference in currents collected by P1 and
P2: Al = 1,52 —Ipg1. If S1 and S2 emit differently, non-zero values of AI should
result; on the other hand, if surfaces 1 and 2 are identical, AI should be zero,
by symmetry. Identical S1 and S2 serve as controls and for testing uniformity in
cavity properties.

Care was taken to avoid the several possible solid state thermoelectric effects
— the potentially most serious of which was considered to be the Seebeck effect —
that could confound plasma-related voltage and current measurements. For ex-
ample, diagnostic wires leading out of the cavity and vacuum vessel were made of
tantalum to match the composition of P1 and P2. They were brought to a single
isothermal reference block outside the vacuum vessel before continuing as copper
wires to the diagnostic circuit.

8.3.2.2 Results and Interpretation

Several surface combinations were investigated for differences in thermionic emis-
sion in a blackbody plasma environment. In Figure 8.7 are plotted Al versus
temperature data for the following S1/S2 combinations: Ta/Hf, Ta/ZrOq, Ta/Ta,
and Hf/Hf. The latter two homogeneous pairs were controls. Several points are
noteworthy:

1) Heterogeneous combinations (Ta/Hf and Ta/ZrOs) displayed sig-
nificant non-zero average AI consistent with differential thermionic
surface emission. (Semilog plots of Al versus T confirmed the expo-
nential current-temperature dependence.) Significant differential cur-
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Figure 8.7: Differential current versus temperature for four S1/S2 pairs in Plasma
IT experiment. Heterogeneous pairs (Ta/Hf, Ta/ZrO2) show greater average dif-
ferential current than homogeneous pairs (Ta/Ta, Hf/Hf).

rents (~ 100pA) could be maintained for several minutes at a single
temperature.

2) Homogeneous combinations (Ta/Ta and Hf/Hf) displayed smaller
AT values which on average were near zero. (Semilog AI vs T plots
did not indicate exponential current-temperture dependencies.)

3) Differential current values on successive thermal cycles were smaller,
probably due to outgassing from the cavity of volatile, ionizable species.
4) Both positive and negative values of AI were observed, possibly due
to transitions between ion-rich and electron-rich plasmas.

These results strongly corroborate the assertion that different materials can
simultaneously emit distinctly in a steady-state fashion in a single blackbody en-
vironment. However, these experiments also suffered from several non-idealities
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which included (i) spatial and temporal temperature variations within the cavity;
(ii) influx and efflux of particles from the cavity; (iii) possibly unaccounted for
or unwanted thermoelectric potentials; (iv) potentials possibly generated by high
temperature chemical reactions; (v) increased electrical coupling between S1 and
S2 at elevated temperatures; and (vi) possible differential outgassing of ionizable
species from S1 or S2. One or more of these probably degraded the quality of
the results and their quantitative effects cannot be assessed with certainty. It
would be helpful if similar experiments could be conducted closer to room tem-
perature, however, this would probably require either materials with unnaturally
low work functions or plasma species with exceptionally low ionization potentials.
Experiments involving radiometer torsion balances or particle energy analysers in
Q-machines are possible.

8.4 Jones and Cruden Criticisms [, 16]

Although both systems ostensibly utilize plasmas, they rely on different aspects
to achieve their paradoxical effects. Plasma I relies on fundamental asymmetries
between electrons and ions. Electrons are thermionically emitted from surfaces
more easily than ions; they are also lighter and more mobile. As a result, thermally-
sustained charge separations, boundary sheaths, and non-zero floating potentials
are possible, by which work can be derived. In the Plasma II system, two surface
ionize the working gas to different extents (via chemical potential differences) and
thereby render different gas pressures. These augment and extend the sheath
effects of Plasma I.

Plasma I has been questioned and criticised both on theoretical and experimen-
tal grounds, notably by Jones [8] and Cruden [16]. Jones considers possible flaws in
the experimental set-up and Cruden considers the underlying theory. These crit-
icisms are serious but inconclusive, suggesting additional experiments and theory
are warranted.

Jones points out that the experimentally reported probe potentials might be
due to: i) temperature gradients in the cavity; ii) cool atoms entering the black-
body cavity from its upper opening; or iii) thermoelectric effects arising from
dissimilar metals used between the probe and voltmeters. Surely, material and
temperature gradients existed in the apparatus, however, in considering the mag-
nitudes and temporal variations of the probe voltages, Sheehan argues against
gradients as their explanation. The details of the discussion between Jones and
Sheehan can be found elsewhere [8]. Given the relatively small values of voltage
reported (< 1V) and the experimental intricacies of high temperature plasma ex-
periments, Jones’ suggested systematic errors of this magnitude cannot be ruled
out, and more conclusive experiments should be conducted.

Cruden performs a thoughtful analysis of the plasma system based on thermo-
dynamics and plasma probe theory [16] and concludes that the probe in Figure
8.1 should not be able to supply current at a voltage through the load. Sheehan
made no formal response in the open literature. The researchers’ thermodynamic
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Figure 8.8: Equivalent circuits for Plasma I system: (a) Cruden [16] and (b)
Sheehan [2, 3].

and probe analyses are in fundamental disagreement.

In examining the experimental set-up (Figure 8.1), Cruden argues that the first
law should be written

dE  dEw,  dEjpea dE,
_— _— = . 1
dt dt dt dt 0, (8.19)

where E subscripted hb, load, and p refers to the energy of the heat bath, load
and plasma, respectively. He finds

dEload o ‘/]727“0176 . dEp - _Vp2robe

= e = 8.20

dt Ry, dt Ry, ( )

and, thus, % = % = 0. From this it follows that % = 0 and % =
% + dfl?t" > 0. Thus, the second law is upheld.

This thermodynamic argument is unsatisfactory. Indeed, as Cruden asserts,
the work in the load can be traced to the energy in the plasma sheath’s electric
field, but if this is exhausted by the load and if the sheath is to remain in some
form of steady state, then, as argued previously, this energy must come ultimately
from the heat bath. In Cruden’s analysis, apparently the sheath is able to provide
energy indefinitely without exhaustion, which is surely not the case unless the
probe potential is zero, which begs the question. The necessary condition for
second law compliance — zero probe voltage — however, conflicts both with theory
and experiment.

The root of Cruden’s and Sheehan’s disagreement appears to lie in their differ-
ing views of the system’s equivalent circuit. The plasma system can be modeled
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as an electrical RC circuit, with the plasma sheath modeled as an emf V, with
an internal resistance R,; the load modeled as a resistor Ry; and the probe-wall
combination modeled as capacitor C. It appears that, in Cruden’s analysis (Fig-
ure 2 in [16]), the equivalent circuit is Figure 8.8a, which from Kirchhoff analysis
shows that, indeed, no steady-state current flows in the circuit. Sheehan asserts
that this circuit does not model the system correctly. The correct circuit is Fig-
ure 8.8b, where the load is in parallel with the probe-wall capacitor, rather than
in series with it (Figure 8.8a). As a result, there can be a steady-state current
through the load, whose power consumption is

15

T (B f1)(Ry + Ry) 20

Here, Py, is zero only for R, = oo, Ry, =0, or R, = oo.

Cruden’s probe theory analysis [16] is too limited to draw any definitive conclu-
sions, even in Cruden’s estimation. He lists several conditions which would obviate
zero probe work; to these others can be added, for instance, if the discharge of the
probe capacitor is made intermittant with a switch (Figure 8.1).

Solid state and plasma physics are closely related. The capacitor interpretation
of the solid state linear electrostatic motor (§9.3) is analogous to the Plasma I
system; in fact, the former was discovered by direct analogic comparison to the
latter. The plasma Debye sheath is the gaseous equivalent to the solid state
depletion region and the probe-wall charging and capacitance are equivalent to
the J-II gap in Figure 9.1. Theory, experiment, and numerical analysis strongly
support the existence of the thermally-charged solid-state capacitor; in turn, this
corroborates the plasma capacitor concept.

In summary, both theoretical [16] and experimental challenges [8] to the Plasma
I paradox have been raised. Since the Plasma I experiments are admittedly cor-
roborative, but not conclusive, Jones’ objections could be correct. Cruden’s theo-
retical analysis does not square with Sheehan’s.

The Plasma II system has not attracted the critical response of Plasma I;
proposed resolutions include: (1) all surfaces in a blackbody cavity identically
Richardson emit, ionize and recombine the working gas (i.e., all work functions in
the cavity are rendered effectively equal under ideal conditions); (2) despite their
differences in thermionic emission, by some unspecified means, materials achieve
identical pressures over their surfaces (e.g., particles do not leave in thermal equi-
librium); or (3) system parameters conspire on distance scales long compared with
microscopic surface processes to thwart macroscopic pressure differentials (e.g.,
large-scale, steady-state density depletions are somehow established in regions
where pressures would otherwise be high). None of these are compelling. Res-
olution (1) is not supported either by theory or experiment and (2) and (3) have
no motivation aside from preservation of the second law, which begs the question.

Plasma systems I and II are untenable on earth because terrestrial tempera-
tures (T" ~ 300K) are too low to generate plasmas. Were ionization energies and
work functions ten times smaller than they are — then perhaps they might. On
the other hand, high-temperature, near blackbody conditions are ubiquitous in
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stellar atmospheres and interiors. A true second law violator might consist of a
sealed tungsten cavity housing a probe, high-temperature motor, and a cesium
plasma buried shallowly in a red dwarf star. A red dwarf star with surface tem-
perature 2000 K would have a lifetime well approaching 10'3 years — this is about
1000 times the current age of the universe. The convective zone of the such a star
would closely approximate the steady-state, high-temperature, isothermal heat
bath envisioned for these experiments. For practical systems, however, one must
also consider real material limitations, for example, the evaporation of metal sur-
faces and high-temperature chemical reactions. For systems similar to the present
laboratory experiments thermal or plasma degradation could be minor since the
vapor pressures of the refractory metals (Ta, Mo) are small, since their chemical
reactivity with alkali metals (K, Cs) are negligible, and since the electron and ion
energies (0.2 eV) are too small to damage metal surfaces significantly.

Today the average temperature of the cosmos, as measured by the cosmic mi-
crowave background, is about 2.73K — far to low to support thermionic emission
from known solids. About 10'° years ago, however, the universal blackbody tem-
perature was about 2000 K — hot enough to sustain both plasmas and solids.
This suggests that, at one time, work could have been extracted directly from the
universal heat bath. Sadly, the universe has simply cooled below the temperature
required for this type of second law challenge.
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9

MEMS /NEMS Devices

Two challenges are discussed that involve room-temperature, micro- and nanoscopic
semiconductor structures and utilize the thermally-sustained electric fields of p-n
junctions. Analytic calculations and numerical simulations support the feasibility
of these devices.

9.1 Introduction

This chapter is concerned with two experimentally-testable solid-state second
law challenges that can operate at room temperature and which could, in principle,
have commercial applications [1, 2, 3]. These are based on the cyclic electrome-
chanical discharging and thermal recharging of the electrostatic potential energy
inherent in the depletion region of a standard solid-state p-n junction. Essentially,
the depletion region can be considered a thermally-rechargable capacitor which, in
these incarnations, are used to power either a linear electrostatic motor (LEM) or a
high-frequency, MEMS/NEMS!, double-cantilever resonant oscillator. Numerical
results from a commercial semiconductor device simulator (Silvaco International
— Atlas) verify primary results from one dimensional analytic models. Present
day micro- and nanofabrication techniques appear adequate for laboratory tests
of principle. Experiments are currently being planned. The initial impetus to

IMicro-Electro-Mechanical Systems/ Nano-Electro-Mechanical Systems
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explore such devices was given in 1995 by J. Bowles, who noted that solid state
and plasma physics are kissing cousins; hence, there should be solid-state analogs
to the previously proposed plasma paradoxes (Chapter 8) [4, 5, 6].

As detailed in this monograph, a number of concrete, experimentally-testable
second law challenges have been proposed, some of which have been corroborated
by laboratory experiments. No experiment has yet demonstrated actual violation,
however, since in all cases the entropy generated by experimental apparatus (e.g.,
heaters/coolers, vacuum pumps) has always exceeded the theoretical maximum
reduction in entropy that could be achieved by the proposed negentropic process
itself. The present solid-state challenges appear different in this respect: whereas
other challenges purport the potential violability of the second law, they offer no
practical hope of actual violation under everyday terrestrial conditions. These solid
state challenges, on the other hand, make positive claims on both, for, whereas
previous challenges are viable only under extreme thermodynamic conditions (e.g.,
high temperatures (T' > 1000K), low temperatures (T < 100K), or low pressure
(P < 1 Torr)), the present systems should be viable at room temperature and
pressure and they do not require ancillary entropy-generating apparatus.

This chapter is organized as follows. In §9.2 the physics of p-n junctions and
thermally-charged capacitors — which undergird the solid-state challenges — is
introduced and developed via one-dimensional analytical models and numerical
simulations. In §9.3, a linear electrostatic motor (LEM) is discussed. It is substan-
tiated three ways: via a 1-D analytical model, by analogy with an R-C network,
and through 2-D numerical simulations. The device is shown to be viable within a
broad range of realistic physical parameters. In §9.4, a resonant double-cantilever
oscillator (hammer-anwvil) is developed along similar lines as for the LEM. Finally,
in §5, prospects for laboratory experiments are briefly considered.

9.2 Thermal Capacitors
9.2.1 Theory

The present challenges are based on the physics of the standard p-n junction diode
[7, 8]. At equilibrium, the depletion region of a diode represents a minimum free
energy state in which bulk electrostatic and diffusive forces are balanced. It follows
that when individual n- and p- materials are joined, there is a transient current
(due to rapid charge carrier diffusion) and energy release as a depletion region
forms and equilibrium is attained. Space charge separation gives rise to a built-in
potential (typical values, V4; ~ 0.5—1V) and an internal electric field which arrests
further charge diffusion. Typical depletion regions are narrow, ranging from 10um
for lightly-doped semiconductor to 0.01um for heavily-doped ones. Although these
distances are small, the broadest depletion regions have scale lengths visible to the
naked eye and the narrowest are two orders of magnitude larger than atoms. They
are large enough to interact with some present-day and many envisioned micro- and
nano-scale devices [9, 10]. The thermally-generated electrostatic potential energy
of the depletion region fuels this challenge. Practically speaking, a semiconductor
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Figure 9.1: Standard device with Junctions I and II and physical dimensions and
standard coordinates indicated. Depletion region at Junction I is shaded.

depletion region constitutes a thermally-charged capacitor. Whereas standard
capacitors dissipate their electrostatic energy through internal parasitic resistance
(R;) on a timescale 7 ~ R;C, thermal capacitors can remain energized indefinitely;
they can also recharge thermally under appropriate circumstances.

Consider a p-n device (Figure 9.1) consisting of two symmetric horseshoe-
shaped pieces of n- and p-semiconductor facing one another. At Junction I (J-I),
the n- and p-regions are physically connected, while at Junction II (J-II) there is
a vacuum gap whose width (x,) is small compared to the scale lengths of either
the depletion region (zgq,) or the overall device (Tgey); that is, x4 <K Tgr ~ Tdey-
Let the n- and p-regions be uniformly doped and let the doping be below that
at which heavy-doping effects such as band gap narrowing are appreciable. The
p-n junction is taken to be a step junction; diffusion of donor (D) and acceptor
(A) impurities is negligible; the depletion approximation holds; impurities are
completely ionized; the semiconductor dielectric is linear; and the system operates
at room temperature. For a silicon device as in Figure 9.1, representative physical
parameters meeting the above conditions are: Ny = Np = 102! m™3, e, = 107
m on a side, 24, = 1.2 x 1076 m, and Ty =3 X 10~%m. This dopant concentration
results in a built-in potential of Vj; ~ 0.6 V. For the discussion to follow, the p-n
device (Figure 9.1) with these parameters will be called the standard device.

Standard one-dimensional formulae have been used to estimate V;; and xg4,
[7, 8]:
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KT ~ NaN,
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Here kT is the thermal energy; ¢ is an electronic charge; n; is the intrinsic carrier
concentration of silicon (n; ~ 1.2 x 101® m~3 at 300K); ¢, is the permitivity of
free space; and k = 11.8 is the dielectric constant for silicon.

That an electric field exists in the J-II gap at equilibrium can be established
either via Kirchhoff’s loop rule (conservation of energy) or via Faraday’s law. Con-
sider a vectorial loop threading the J-I depletion region, the bulk of the standard
device, and the J-II gap. Since the electric field in the J-I depletion region is uni-
directional, there must be a second electric field somewhere else along the loop to
satisfy Faraday’s law (§ E-dl = 0). An electric field elsewhere in the semiconduc-
tor bulk (other than in the depletion region), however, would generate a current,
which contradicts the assumption of equilibrium. Therefore, by exclusion, the
other electric field must exist in the J-II gap. Kirchhoff’s loop rule establishes the
same result. Conservation of energy demands that a test charge conveyed around
this closed path must undergo zero net potential drop; therefore, to balance Vj;
in the depletion region, there must be a counter-potential somewhere else in the
loop. Since, at equilibrium, away from the depletion region there cannot be a po-
tential drop (electric field) in the bulk semiconductor — otherwise there would be
a nonequilibrium current flow, contradicting the assumption of equilibrium — the
potential drop must occur outside the semiconductor; thus, it must be expressed
across the vacuum gap.

In Figure 9.2, the energy (), space charge density (p), and electric field (E)
are depicted versus horizontal position (z) through J-I and J-II. There are several
important differences between the two junctions. The most noticable is that, while
physical properties vary continuously with position across the J-I region, there
are marked discontinuities for J-II. These are due to the inability of electrons to
jump the vacuum gap (z4). This restricts the diffusion of charge carriers that
would otherwise spatially smooth the physical properties. As a result, Junction IT
suffers discontinuities in energies, voltages and space charge. Because the J-II gap
is narrow and the built-in potential is discontinuous, there can be large electric
fields there, more than an order of magnitude greater than in the J-I depletion
region. Treating the gap one-dimensionally, the J-II electric field is uniform, with

|Ey_11| ~ Voi while in the J-I bulk material it has a triangular profile, with average
Tg

magnitude |Ej_1| ~ Y2, The ratio of the electric field strength in the J-IT gap to

Tdr

that in the middle of the J-I depletion region scales as 1;3%_111 ~ %4z > 1. For the
- g

standard device, the average value of the field strength is |Eg| ~ 122&% ~ 5x10°

V/m and |Eqg| ~ 5558%— ~ 2 x 107 V/m, rendering ];33{:11 ~ 40.

Let a switch bridge the J-II gap, physically connecting the entire facing surfaces
of the n- and p-regions. For the present discussion, let the switching element be
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Figure 9.2: Physical characteristics versus position x through Junctions I and II.
Left (z < 0) and right (z > 0) sides of each graph corresponds to n- and p-regions,
respectively. (a) Energy levels for vacuum (€q4.), conduction band edge (£.),
intrinsic Fermi level (Eg;), Fermi level (€r), valence band edge (&,). (b) Charge
density (p). (c) Electric field magnitude (JE|) Note that vertical scales for E are
different for J-I and J-II (|Ej_11| > |Ej_1|).



272 Challenges to the Second Law

simply a slab of intrinsic semiconductor inserted into the J-II gap. If the current
transmission through the slab is good (that is, its effective resistance and junction
potentials are small), then when equilibrium is reached, the physical characteristics
of J-II will be approximately those of J-1, as depicted in Figure 9.2.

Theoretical limits to the energy released from J-II during its transition from an
open- to a closed-switch configuration can be estimated from the total electrostatic
energy &5 inherent to the J-II junction. Let A&qs(J — IT) = [Ees(J — I1, 0pen) —
Ees(J — I1,closed)] be the difference in electrostatic energy in J-II between its
closed- and opened-switch equilibrium configurations (Figure 9.2). Within the
1-D model constraints, this can be shown to be roughly:

zqrkT .  NaNp 1 1 &
[ In(—5—)* - [— — %

€o
2 q n; Ty  Bxgr

A (J — IT) ~

1, (9.3)

By eliminating V;; and 24, with (9.1) and (9.2) and using Ny = Np = N, (9.3)
can be recast into:
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It is evident from (9.4) that the device’s energy varies strongly with temperature,
scaling as (T')3. This is not surprising since primary determinants of the energy
are V3; and x4, both of which originate from thermal processes.

Positive energy release (A€.s > 0) is subject to limits in x4, N, and T. From
(9.3), an energy crossover (+A&;) to (—A&) occurs at xy = 2xg,; for silicon,
this is #, ~ #¢=. That is, only for z, < *{= will net energy be released in
switching from open- to closed-gap configurations. Since x4, is normally restricted
to xgr < 107°m, this implies z;, < 2 x 107°m, thus, thermal capacitors must
intrinsically be microscopic in the gap dimension; and, at least for the vacuum
case, mechanical considerations will probably also similarly limit the other two
dimensions. Equation (9.4) indicates that energy crossover for N occurs for the
standard device at N ~ 10?2m~3. Finally, A — 0 when T falls below the
freeze-out temperature for charge carriers; for silicon, Tyreeze < 100K.

For the standard device, (9.3) predicts the J-II region contains roughly three
times the electrostatic potential energy of the J-I region. Equivalently, the whole
p-n device contains twice the energy in its open-gap configuration as it does in
its closed-gap configuration and the majority of this excess energy resides in the
electric field of the open J-II vacuum gap.

The energy release in closing the J-II gap is equivalent to the discharge of a
capacitor. For the standard device, (9.3) gives the net energy release as A€.s(J —
IT) ~5.2x10717J ~ 320 eV. When J-IT is open, there are about 330 free electronic
charges on each gap face (calculable from Gauss’ law); when it is switched closed,
most of these disperse through and recombine in the J-II bulk. This net flow
of charges is due to particle diffusion powered by concentration gradients and to
particle drift powered by the large capacitive electric field energy of the open J-II
vacuum gap. Thermodynamically, this energy release may be viewed as simply
the relaxation of the system from a higher to a lower energy equilibrium state.
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This thermal capacitor can remain charged indefinitely (until discharge) since the
open-gap configuration is an equilibrium state of the system.

The device output power Py, scales as: Pge, ~ W, where 74 is the
characteristic discharging time for the charged open-gap J-11 region as it is closed.
If 745 is short, say Tais ~ 1077 — 1078 sec — a value consistent with the size of
micron-sized p-n junctions or typical inverse slew rates of micron-sized transistors
— then the instantaneous power for a single, switched standard device should be
roughly Pye, ~ 0.5 — 5 x 10~ W. Instantaneous power densities can be large; for

the standard device it is on the order of Pye, = (1(&75:,,,)3 ~0.5—-5x10° Wm3.

9.2.2 Numerical Simulations

Two-dimensional numerical simulations of this system were performed using Sil-
vaco International’s semiconductor Device Simulation Software [Atlas (S-Pisces,
Giga)]. Junctions were modeled as abrupt and the physical parameters for charge
carriers were generic. Output from the simulations were the two-dimensional,
steady-state, simultaneous solutions to the Poisson, continuity, and force equa-
tions, using the Shockley-Read-Hall recombination model. There is good agree-
ment between the results of the 2-D simulator and those of the 1-D analytic model.

Devices identical to and similar to the standard device were studied. Over a
wide range of experimental parameters (1017 < Nap < 1026m—3; 1078 < Ty <
3 x 10~"m), the two-dimensional numerical simulations showed good agreement
with the primary findings of the 1-D analytic model, most significantly that much
larger electric fields reside in the J-II vacuum gap than in the J-I junction, and
that significant electrostatic energy is both stored in the J-II region and is released
upon switching. Their differences can be traced primarily to the unrealistic dis-
continuities in physical parameters in the 1-D model, which were smoothed by the
more realistic 2-D simulator.

In Color Plate IV, the electric field magnitude is shown for three related vari-
ations of the standard device. Color Plate IVa (hereafter, Case 1) depicts the
electric field for the standard device, with the J-II gap closed. As expected, the
electric fields are modest (|E| < 10° V/m) and are centered on the depletion re-
gions, which, as predicted in the 1-D model, extend over the length of the device.
The field structure demonstrates perfect symmetry with respect to its horizontal
mirror plane and rough mirror symmetry with respect to its vertical mirror plane.
The imperfect vertical mirror symmetry is due to the differences in the physical
properties of the charge carriers.

Color Plate IVb (Case 2) depicts the electric field magnitude for the standard
device. While the electric fields in the J-I depletion regions of Cases 1 and 2 are
similar, in the J-II regions they are significantly different. The J-II electric field
in Case 2 is E ~ 7 x 10 V/m versus an average of E ~ 5 x 10° V/m for Case
1. Numerical integration of the electrostatic field energy over the entire region
(vacuum and bulk) indicates the total electrostatic energy of Case 2 is roughly 1.5
times that of Case 1. Considering only the J-II region of each device, Case 2 stores
roughly twice the electrostatic energy of Case 1. These are within 50% of the the
energy estimates of the 1-D analytic model.
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Figure 9.3: Z-normalized electrostatic potential energy s versus gap width (z,)
for standard device in 1-D model (solid line) and 2-D model (open circles).

Color Plate IVc depicts Case 3, a configuration intermediate between Cases
1 and 2, and one in which the J-II gap of the standard device is 20% bridged at
its center by a slab of undoped silicon (I, = 3004, I, = 6004). As expected, the
bridge allows electron-hole transport between the n and p regions, thereby reducing
the large fields of Case 1 closer to values of Case 2. The field is attenuated most
across the bridge, but in fact, attenuation extends over the entire length of the
channel (L,). The electrostatic energy of Case 3 is intermediate between Cases 1
and 2. This can be viewed as partial shorting out of the thermal capacitor. The
electric fields for all cases are primarily in the a-direction, and especially so for
Case 2.

Electrostatic potential energy is stored in the J-I and J-II regions of the device
in both the open- and closed-gap configurations. In Figure 9.3, &.s is plotted
versus x4 for the standard device, comparing the 1-D and 2-D models. (Note
that the energy is normalized here with respect to the z-direction (J/m) so as to
conform with the output of the 2-D model.) The total electrostatic energy is the

sum of the contributions from the vacuum energy density (%) and n-p bulk
energy density (’“"QE ’ ), integrated over their respective regions. In the 1-D model,

we take the electric field in the J-II gap to be constant, while in the J-I region
it is taken to have a triangular profile as in Figure 9.2, with maximum electric
field strength of E,,.. = 2;/% For both models, the device energy decreases
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Figure 9.4: Z-normalized electrostatic energy &, versus dopant concentration (V)
for standard device for open- and closed-gap configurations. Comparison of 1-D
and 2-D models.

monotonically with increasing gap width, however their magnitudes and slopes
differ due to the differing model assumptions. At small gap widths (z, < 10~ "m),
the 1-D model predicts greater energy than the 2-D model, owing principally to
its vacuum energy, however, at larger gap widths (x4, > 10~"m) the energy in the
2-D model’s n-p bulk dominates, as will be shown later. The 1-D model explicitly
ignores contributions of energy to the open-gap configuration arising from the p-n
bulk semiconductor on either side of the gap. (See (9.3).) In the density vicinity
of the standard device the two models agree to within about 50%.

The stored electrostatic potential energy of the device strongly depends upon
the dopant concentration. In Figure 9.4, &, is plotted for the standard device ver-
sus dopant concentration N, for both open- and closed-gap configurations, com-
paring 1-D and 2-D models. Above N = 10¥m~3 the 1-D model shows roughly
constant logarithmic increase in €., with increasing N, while the 2-D model shows
a roughly constant logarithmic increase up to about N ~ 102'm~3, at which point
Ees begins to flatten out and saturate for both open- and closed-gap configurations.

Both models display a crossover in energy between the open-gap and closed-gap
configuration (See Color Plate IV) above the dopant concentration of the standard
device (N = 1021m’3). The crossover density Ne.oss is where A&, reverses sign.
In the 2-D model the energy crossover occurs at Neposs ~ 7 x 102?2m ™3, while in
the 1-D model it occurs at Neposs = 8 X 102!m™3. Above N,,.ss the closed-gap
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Figure 9.5: Z-normalized electrostatic energies &.5 versus gap bridging fraction by
undoped silicon slab.

configuration is more energetic than the open-gap one. As a result, above Ny qss
one cannot expect to extract energy by closing the J-II gap. The standard device
operates at N = 102!m~3, which is a factor of 8 below the 1-D crossover and a
factor of 70 below the 2-D crossover density.

Energy release due to gap closing can be made continuous. Let a tightly fitting
rectangular slab of silicon be inserted into the gap, thereby allowing the transport
of charge between the separated n- and p-regions and the relaxation of the J-
IT region into an equilibrium state like J-I (Figure 9.2). Figure 9.5 displays the
electrostatic energy of the standard device (E.5) versus bridging fraction by a slab
of undoped silicon (z, = 3004 x 30004 = L,). Here, 0% bridging corresponds to
a completely open configuration and 100% bridging corresponds to a completely
closed configuration.

As expected, the total system, vacuum, and bulk energies decrease as the silicon
is inserted; the silicon bridge energy increases slightly with its insertion. At full
insertion, the system’s energy is partitioned between bulk, vacuum and piston
energy in a ratio of roughly 6 : 1 : 0.25. These data suggest that for minimal
investment in piston energy, roughly 10 times more energy is released in the device
as a whole. The 2-D simulations indicate a faster-than-linear decrease in system
energy with bridging fraction. This can be explained by diffusion of charge into
the bulk, ahead of the silicon slab.
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9.3 Linear Electrostatic Motor (LEM)

9.3.1 Theory

The 1-D analytic and the 2-D numerical models verify that significant electrostatic
potential energy resides in the J-1II region of the standard device and that it can be
released when the device is switched from an open to a closed configuration. Both
configurations (Cases 1 and 2 in Color Plate IV) represent equilibrium states;
that is, these are states to which the device relaxes when left alone in a heat
bath. Their energies are different because of their differing boundary conditions,
specifically in the J-IT gap, which frustrates the diffusive transport of electrons and
holes between the n- and p-regions. Since each configuration is a state to which
the system naturally thermally relaxes, the device may be made to cycle between
Cases 1 and 2 simply by opening and closing (bridging) the J-II gap with a piston
(as done in Figure 9.5). Many energy extraction schemes can be imagined; here we
consider one that can be rigorously analysed: a linear electrostatic motor (LEM).

The motor consists of a dielectric piston in the J-II gap which is propelled by a
self-generated, electrostatic potential energy minimum (pulse). This electrostatic
pulse propagates back and forth through the channel, carrying the piston with
it. The piston itself creates the potential energy minimum in which it rides by
electrically bridging the J-II gap locally. The free energy that drives the piston
resides in the gap electric field; its thermal origin was discussed earlier (See (9.4).).
In essence, the piston perpetually ‘surfs’ an electrostatic wave that it itself creates.
As will be shown, the piston can surf under load (thus performing work) in the
presence of realistic levels of friction and ohmic dissipation. In accord with the first
law of thermodynamics, the net work performed must come from the surrounding
heat bath; however, if the first law is satisfied, then the second law is compromised.

Consider a dielectric slab piston situated outside a charged parallel plate ca-
pacitor, as in Figure 9.6a. Let its motion be frictionless. It is well known that
the dielectric slab will experience a force drawing it between the capacitor plates;
this is indicated by the accompanying force diagram, which gives the force den-
sity experienced by the dielectric at a given horizontal position. The force can
be calculated either by integration of the (p - V)E force over the piston volume,
or equivalently, by invoking the principle of virtual work since the total energy
of the the piston-capacitor system is reduced as the slab enters the stronger field
region between the plates. As the force diagram indicates (Figure 9.6a), the piston
experiences a force only so long as it in the inhomogeneous field near the end of
the capacitor. Specifically, the y-force (F,) requires gradients in the y-component
of the electric field; i.e., [(p- V)E], = F, = (pw% —|—pya%)Ey.

Now let the stationary dielectric piston be situated symmetrically between two
identical capacitors (Figure 9.6b). Here the net force on the piston is zero and
it rests at equilibrium. However, as the accompanying force diagram indicates,
this equilibrium is unstable since any infinitesimal y-displacement increases the
net force on the piston in the direction of its displacement, while simultaneously
reducing the net force in the opposite direction. As a result, the piston will accel-
erate in the direction of its initial displacement.

Next, consider Figure 9.6¢, which depicts a semiconducting dielectric piston at
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Figure 9.6: Dielectric interacting with capacitors, with accompanying force ver-
sus displacement graphs. a) Dielectric piston is drawn into charged capacitor via
[(p- V)E], force. b) Dielectric piston situated equidistantly between two equiv-
alent capacitors in an unstable equilibrium; unbalanced force in direction of dis-
placement. c¢) Linear electrostatic motor (rail gun): semiconducting dielectric
piston in unstable equilibrium between semiconducting capacitor plates.
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rest, situated between two semiconductor capacitor plates. (Compare this to Case
3 in Color Plate IV.) The semiconducting dielectric piston allows charge transport
between the plates, and so it locally reduces the electric field in and around the
piston; thus, the piston sees more intense fields to either side. Essentially, it is
in the same unstable equilibrium depicted in Figure 9.6b. If displaced, it will
accelerate in the direction of its displacement.

From the principle of virtual work, one can write the frictionless electrostatic
acceleration (as) of the piston (mass density p; physical dimensions Iy, Iy, L;
dielectric constant €) inside a long parallel plate capacitor as

€ —

es = E}-FE 0 y2(a? - al), 9.5
a 2lyp ( 1 2) 2 l 12 ( a2) ( )
where E1 and F, are the electric field strengths at the ends of the piston and
oy = B, 2, where E, Ys is the strength of the undisturbed electric field far

from the plston

If the piston is at rest, then by symmetry F; = FEs, and there is no accel-
eration, but if the piston is displaced, then F; # Fs and the piston accelerates
in the direction of motion. In the frictionless case, the piston is unstable to any
displacement. In essence, this motor is an electrostatic rail gun, the electrostatic
analog of the well-known magnetic rail gun.

We note that a.s # 0 only for the case of both a semiconductor capacitor and
a semiconductor piston; if either the piston or the capacitor plates are perfectly
conducting or perfectly insulating, then a.s = 0. If the capacitor plates are perfect
conductors (approximated by metallic plates), then the plate surfaces must be
equipotentials, in which case there cannot be a net electric field difference between
the front and back ends of the piston (E; — E» = 0), therefore a.s = 0. On
the other hand, if the plates are perfect insulators, then their surface charges are
immobile and the electric field remains the same throughout the capacitor despite
any displacement of the piston and again F; — Fy = 0. Conversely, if the piston
is a perfect conductor, its surfaces must be equipotentials so the electric field at
the front and back must be the same (E; — E5 = 0), or alternatively, one can say
that, as a conductor, electric fields cannot penetrate into the piston interior so as
to apply the [(p - V)E], force, and again there can be no net force exerted on it.
Finally, if the piston is an insulator, then charge residing on the capacitor plates
cannot flow through it so as to diminish the electric field; again, £y —Fo = 0. Thus,
it is only when both the piston and the plates have finite, non-zero conductivities
that they can act as an electrostatic motor.

Assuming the piston to be a semiconducting (0 < o < o0) dielectric (¢), then
using Ohm’s law (J = oE), the continuity equation (V -J = E)’ and Gauss’
law (V-E = £ ) one can describe the acceleration of the piston a.s in terms of its
electromechamcal properties as it locally shorts out the electric field in the channel
through which it passes:

V.o
ly

€ — €p
a =
€s Qply

—° £2 exp[— ) {1 — exp[—1]}

17 2ply
(9.6)

]2 exp[—An){1 — exp[—n]} =
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Figure 9.7: Acceleration of piston a.s versus 7 for standard device. Curve A:
No friction or load. Curve B: Non-zero friction or load (a = 5.6 x 107m/sec?);
minimum starting velocity and terminal velocity indicated.

Here n = 2;15’ vy is the velocity of the piston, and § is a phenomenological

constant that is a measure of how far ahead of the moving piston the electric field
is affected. B must be positive to avoid unphysical delta function charge densities.
Small § values are evidenced in later 2-D simulations (Plate V); here we take
8 =0.1.

Consider a rectangular slab of silicon (I, = 300;1;ly = 6004; I, = 10*A,
o =4x1073(Qm)~1, kK = 11.8), hereafter called the standard piston). In Figure
9.7, the standard piston’s acceleration is plotted versus n for the standard device.
Curve A represents the frictionless case. In the limits of v, — 0 (n — o0) and
v — oo (n — 0), one has a.s — 0, as expected. The former case (v, = 0) has been
treated previously. For v, — oo, the piston moves too quickly for the capacitor’s
charge to cross the piston and short out the field, so F; — F; = 0 and a.s = 0.
Since o and v, are reciprocals in 7, this model also predicts, as before, that a.s = 0
if the piston is perfectly conducting (o = 00) or perfectly insulating (o = 0) and,
therefore, accelerates only for the semiconductor case.

The form of a.s in (9.6) is handy for introducing friction on, and loading of, the
piston. This model considers loading to be constant over the range of velocities
of the piston, with the result that its acceleration curves are simply shifted down
by an amount equal to the magnitude of the loading. Thus a non-zero start-up
velocity and a bounded terminal velocity are imposed on the piston dynamics.
We point out that the negative portion of Curve B to the right of vs; does not
signify negative acceleration, but simply indicates values of 1 for which motion is
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forbidden.

Numerical integration of (9.6), incorporating friction and load resistances, al-
lows investigation of the piston’s complex nonlinear dynamics. For example, in
Figure 9.8a, the standard piston’s velocity is plotted versus time for three values
of friction/loading for the standard device. Curve (i) corresponds to the unloaded,
frictionless piston case; it has no classically-defined terminal velocity. Curve (ii)
corresponds to the piston subject to a constant frictional/load acceleration of
5.6 x 107 m/sec?. In this case, the piston has a terminal velocity of roughly 8
m/sec. Finally, for Curve (iii) (a = 9.4 x 107 m/sec? friction/load), the piston has
only a narrow range of velocities for which it has positive acceleration; for greater
friction or loading the piston does not begin to move.

Figure 9.8c plots piston power versus v, for the previous three cases. In the
frictionless case (Curve (i)), power increases monotonically, but is bounded. Cases
(ii) and (iii) display local maxima. The power maximum for case (ii) occurs below
its terminal velocity, indicating that the most efficient power extraction schemes
should use velocity-governed loads, rather than constant loads. Also, notice that
case (ii) and (iii) show initially negative excursions, evidence that energy must be
supplied to kick-start the piston’s motion.

There are three characteristic times scales pertinent to the operation of the
standard device: (i) the plate discharge time along the piston (745 ~ i—z), (ii)

the recharging time for the plates (7,.); and (iii) the period of oscillation of the

piston in the channel (7,5, ~ 2ULU” ), where vy, is the average velocity of the piston.
The discharge time (745) must allow a sufficient difference in electric field to be
maintained between the leading and trailing edges of the piston so that it is pulled
through the channel.

Circuit theory shows that the recharge time (7...) will be longer than the
discharge time and should not present an operational problem. Typically, 7. for
p-n diodes of physical dimensions comparable to the standard device are T, ~
1077 — 1078 sec. However, in order for the electric field in the gap to thermally
regenerate enough to maintain force on the piston, the period of oscillation of the
piston in the channel (7,5.) must be longer than 7,.., and ideally, much longer.
Therefore, for the smooth operation of the motor, the ordering for characteristic

. 1 2L
time scales should be * >~ 7g;5 < Tpee K Tose =2 52
Y Y

The electrostatic motor (Figure 9.9a) can be modeled as a network of discrete
resistors and capacitors (Figure 9.9b). The semiconductor capacitor plates are
modeled as a distributed network of resistors (R) and their interior surfaces as a
sequence of aligned parallel plate capacitors (C'). The network is powered by a
battery (V).

The piston is represented by a resistor and by an accompanying switch. The
piston’s motion is modeled by the sequential closing and opening of the local
switches. As the piston leaves a capacitor, region, a closed switch,, opens up,
while the next switch,,+1 in line closes, signaling the arrival of the piston. The
trailing capacitor recharges while the leading capacitor discharges.

It can be shown from basic circuit theory — and has been confirmed by paramet-
ric studies of this system using PSpice network simulations — that the time constant
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Figure 9.8: Piston dynamics for standard device. a) Acceleration versus v, for
three cases: (i) frictionless; (ii) friction/load acceleration a = 5.6 x 107m/sec?;
and (iii) friction/load acceleration a = 9.4 x 107m/sec?. b) Velocity versus time

for cases (i) and (ii) above; case (iii) absent for lack of sufficient start-up velocity.
c) Piston power versus v, for cases (i) - (iii) above.
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Figure 9.9: Linear electrostatic motor modeled as a discrete resistor-capacitor
network. a) Piston in standard device. b) Analog resistor-capacitor network model.
c) Electrostatic energy versus time for sequential firing of two capacitors; traveling
negative potential energy pulse evident in (C,, + Cj+1) curve.
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for the discharging capacitor is less than the time constant for the recharging ca-
pacitor. As a result, the moving piston always finds itself moving in the direction
of more intense electric fields and field gradients. In other words, it perpetually
moves forward toward a lower local energy state, riding in a self-induced potential
energy trough. The traveling piston can also be viewed as the material equivalent
of an electrical pulse propagating through a resistive-capacitive transmission line.
This semiconducting piston acts analogously to the conducting piston in a mag-
netic rail gun which, by completing the circuit between the gun’s two electrified
rails, establishes a current and magnetic field by which the resultant Lorentz force
on the piston’s current drives the piston along the rails. In the present electrostatic
case, the piston is propelled forward by the greater (p - V)E force on its leading
edge.

When the piston reaches the end of the R-C network, where the field ahead
has dropped off, but where field behind has regenerated, the piston reverses its
motion. As a result, it will move cyclically through the network. It is remarkable
that this motion does not require any electronic timing circuitry; instead, the
timing is set by the piston itself. As long as it overcomes friction, the piston will
run perpetually for the life of the battery.

Via the substitution Vi — Vj,;, the piston in Figures 9.9 and 9.10 may now be
identified as the semiconductor piston in Case 3 (Plate IVc). The same physics
applies, except that, whereas the free energy for the linear electrostatic motor (rail
gun) above is supplied by a battery, now it is supplied by the free energy of the
thermally-powered p-n depletion region.

9.3.2 Numerical Simulations
Essentials of the above 1-D dynamical nonequilibrium model of the linear electro-
static motor are corroborated by the equilibrium solutions of the 2-D model. Color
Plate V presents a sequence of 2-D equilibrium solutions simulating aspects of the
motion of the piston through the J-II region of the standard device. It is strongly
emphasized that this is not a dynamical simulation in which the piston is modeled
as moving; rather, these are quasi-static equilibrium configurations of the system
simulated by the Atlas program in which the piston is held at rest at different
locations in the J-II region, despite implicit force imbalances. Nevertheless, much
physics can be inferred by stepping the piston through the channel in this fashion.
In Plate Va, the leading edge of the piston is visible above the J-II channel. The
electric field is fairly uniform in the gap interior (E ~ 7 x 105 V/m), decreasing in
strength at its ends, as expected. As the piston enters the gap, thereby initiating
the bridging of the separated n- and p-regions, the electric field strength falls
throughout the J-II vacuum and p-n bulk regions, but most strongly near the
piston. This substantiates the 8 term in (9.6). The field and field gradients
are stronger below the piston (in the direction of implied motion) than above it
(outside the channel); as a result, should the piston be free to move, it would be
drawn further into the channel. In Plate V¢, with the piston now squarely within
the channel, the electric fields in and near the piston have been reduced by a factor
of 3 below pre-insertion values, but they remain larger in the channel ahead of the
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Figure 9.10: Electrostatic potential energy of standard device versus piston position
in J-II gap: Total energy, p-n bulk energy, vacuum energy, and piston energy
indicated. Piston located at Step 7, corresponding to Plate Vd.

piston and, therefore, continue to draw it in.

In Plate Vd, as the piston approaches mid-channel, the field ahead of the piston
continues to be more intense than the one behind. At mid-channel, (Plate Ve),
the field is roughly balanced on both sides of the piston. Here, a resting piston
would experience roughly no net force, but it would be in the unstable equilibrium
position depicted in Figure 9.8b. Were it in motion, then it should continue to
see stronger fields and field gradients ahead of it than behind it and, thus, would
continue to move in the direction of motion. Furthermore, since presumably it has
already accelerated to mid-channel from the gap ends, its inertia should carry it
past this mid-channel equilibrium point.

Now compare the upper channel in Plates Vd and e. Notice the field has been
partially restored between Vd and Ve after the ‘passage’ of the piston. Finally, in
Plate Vf, the piston has reached the bottom of the channel. As before, the field
is locally reduced, but it has regenerated behind. Since the field is now stronger
behind the piston, it should exert a net force upward so as to reverse its motion.
It is instructive to view this ‘motion sequence’ in reverse, proceeding from Ve—Va
so as to appreciate how the piston’s motion can be cyclic. This is most evident
perhaps in the inversion symmetry seen between Plates Vc and V.

Figure 9.10 displays the equilibrium electrostatic potential energies of the stan-
dard device and piston for a sequence of steps through the channel, calculated with
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the Atlas 2-D simulator. Frames a, b, ¢, d, e, and f in Plate V correspond to Steps
1, 3,5, 7,9 and 13, respectively, in Figure 9.10. The total, vacuum, and p-n bulk
energies of the standard device decrease significantly and symmetrically as the pis-
ton enters the channel from either direction and reaches the mid-channel (Step
9). The fractional change in field energy in the vacuum is greater than for the
p-n bulk, but the greatest absolute change occurs in the bulk. The electrostatic
energy invested in the piston itself is small compared with the bulk and vacuum
contributions.

The data in Figure 9.10 are equilibrium solutions and assume the piston to
be at rest. The energy depression seen in Figure 9.10 would occur only locally
around the piston and would be spatially asymmetric, with its greatest strength
and gradient in the direction of the piston’s motion, both as suggested in individual
frames of Plate V, in Figure 9.9¢, and in the 1-D analytic model. In summary, the
sequential 2-D numerical simulations (Plate V and Figure 9.10) support the 1-D
nonequilibrium analyses preceding it.

9.3.3 Practicalities and Scaling

The steady-state operation of this solid-state electrostatic motor constitutes a
perpetuum mobile of the second type. It pits the first law of thermodynamics
against the second. If the piston cycles perpetually while under load, performing
work, then this energy must come from somewhere. Assuming the first law is
absolute, the only possible source of this unlimited energy must be the [infinite]
heat bath surrounding the device. Since the device operates in a thermodynamic
cycle, heat is transformed solely into work, in violation of the second law.

This section addresses the practical details of this device, paying especial at-
tention to the operational limits imposed by physically realistic parametric values:
mass, physical dimensions, electric field, friction, electrical conductivity, charac-
teristic time scales (e.g., Tdgis, Trec, Tosc), and statistical fluctuations. It is found
that there exists a broad parameter space at and below the micron-size scale for
which a semiconducting piston should be able to overcome realistic levels of fric-
tion and load so as to perform work indefinitely, while being driven solely by the
thermally-generated electric fields of a p-n junction. It is found that these devices
should be able to convert heat energy into work with high instantaneous power
densities, perhaps greater than 108 W /m3.

Consider the standard piston situated in the J-II gap of the standard device.
From Figure 9.10, the standard piston should reside in a potential well approxi-
mately 3 x 107'® J deep. From Figures 9.8 and 9.9, in the frictionless case the
piston should experience a maximum acceleration of 10%m/sec? and be capable of
instantaneous power outputs of 2 x 107?W. We will now consider a realistic model
for friction.

Let the J-II channel walls be tiled with a thin, low-friction surface such as
graphite. Let the outer surfaces of the piston be only partially tiled with a match-
ing low-friction surface such that the contact fraction between the piston and the
channel walls (f.) is small (0 < f. < 1). On the other hand, let f. be sufficiently
large that: (i) there are sufficient numbers of atoms projecting out from the piston
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surfaces in contact with the channel walls to hold and guide the piston; and (ii)
there is sufficiently good electrical conduction between the piston and the channel
walls that one can use standard Ohmic current rather than quantum mechanical
tunneling current to describe the system’s electrical behavior.

It is well known that, at micron and sub-micron size scales, atomic, ionic,
and electrostatic forces (e.g., van der Waals’ interactions, induced surface charge,
molecular and hydrogen bonding, surface tension) can play dominant roles in sys-
tem dynamics. In order to minimize friction between the piston and channel walls,
fe should be as small as possible. The smallest non-zero coefficients of static and
kinetic friction yet measured experimentally are found in nested multi-walled car-
bon nanotubes (MWNT) [11, 12]. Upper-limit values of coefficients of static (s)
and kinetic (k) friction have been experimentally measured to be: Fy < 2.3 x 104
N/atom = 6.6 x 10° N/m?, and F}, < 1.5 x 1071 N/atom = 4.3 x 10> N/m?.
Theoretical arguments suggest true values could be much lower than these. This
friction is presumed to arise purely from van der Waals’ interactions between the
sliding carbon contact surfaces. The friction can be reduced by reducing the con-
tact fraction f.. Experimental observations suggest that MWNT operate as totally
wear-free bearings [13].

The static or kinetic friction Fy(, ) between two surfaces of area A, where
normal forces are not imposed and asperities are absent, should scale as: Fy(s ) =
JeAF (s k). For the piston in the J-II channel, the acceleration is:

Fresw _ feAFm _ 2feFsn
m pSllwlylz pS'Llw

af(s,k) = (9.7)

For the piston to begin moving in the channel the electrostatic acceleration
must exceed the static friction:

Ges _ (¢ — €)Vi(af — a3)
af.s 4lzlyfc~7:s
This inequality is the starting point for delimiting a viability regime for the oper-

ation of this device. For the standard piston in the standard device (letting Fs be
the upper-limit value for MWNT and taking ((a3 — a3) ~ 0.5), (9.8) reduces to:

> 1 (9.8)

aGS

~(3.2xa 8 9.9

ars ( )l% T (9.9)

In Figure 9.11 is plotted Loglo(gf”s ) versus I,, for various contours of constant

fe. For Logio(2e=) < 0, the frictional acceleration exeeds the electrostatic accel-

af.s
eration, so the piston cannot move. This places a lower bound on the viability

regime of the standard device. Above this bound, the piston can experience siz-
able accelerations, on the order of 107 — 10%m/sec?, but these accelerations are
still within mechanical strength limits for small structures.

A left-most viability bound for the standard device is found by requiring that
I significantly exceed the size of individual atoms and, preferably, be large enough
that the system can be treated by classical, rather than quantum, theory. If the
piston thickness [, is greater than about 50-100 atoms, or about 10~®m, this
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Figure 9.11: Ratio of piston acceleration to frictional acceleration (Loglo(‘f:: )
versus gap width (x,) with contours of constant f. indicated. Viability regime

delimited by labeled boundary lines. Star indicates location of standard device.

system should be essentially classical. This criterion sets the left-most bound of
the viability regime in Figure 9.11. The last bound is set by restricting f. such
that some reasonable minimum number of atoms act as guide surfaces between
the piston and the channel walls. Choosing 10 atoms/piston face as sufficient,
the sigmoidal right-top viability bound is determined. This bound can later be
modified to satisfy electrical conductivity constraints.

The viability regime has been delimited using realistic, but conservative, choices
for the system parameters. More liberal choices (e.g., letting Fy — Fj or (a2 —
a3) = 0.8) would expand the regime somewhat. Even as it stands, however, the
viability regime for the electrostatic motor spans two orders of magnitude in size

(107%m < I, < 107%m) and over three orders of magnitude in (‘;f

Several observations can be made from Figure 9.11:

a) The spontaneous acceleration of the piston by self-generated fields
appears possible only for micron and sub-micron pistons. This is espe-

cially evident in (9.6) where a.s ~ lis Given the severe physical and

mechanical requirements for positive‘ acceleration against friction (See
(9.8) and (9.9), it is not surprising that this phenomenon has not been
discovered accidentally.

b) aes can exceed ay by more than 3 orders of magnitude, thus allowing
significant loading of the piston with which to perform work.

¢) More frictional contact surfaces appear feasible (up to 10® times
more frictional than MWNT), without precluding piston motion or
loading.
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Figure 9.12: Physical dimensions of standard piston.

The magnitude of the piston’s acceleration (a, = a.s — ay) can be calculated,
including friction, using (9.5-9.7). For the standard device, using graphitic surfaces
and assuming f. = 10~ (corresponding to 1.7 x 10% atoms on each piston face),
one finds ay = 1.9%x 10% m/sec?, a., = 6.7x 107 m/sec?, and a, = 6.5x 107 m/sec?.
The average velocity during a piston stroke is roughly v, ~ /2L a, ~ 2m/s. The
oscillation period of the piston in the channel is 7,5, = (%’) ~ 2 x 10~ 7sec; the

oscillation frequency is fose = Tose ~ 5 X 10°Hz. 74 is significantly longer than
the typical inverse slew rates for p-n transistors of comparable physical dimensions
(Tais < Tree ~ Ttrans ~ 1078 — 107 "sec<< Tose =~ 2 x 107 7sec); therefore, the
electric field in the wake of the piston traversing the channel can recharge before
the piston’s return. On the other hand, given a typical piston velocity and length
(vy ~ 2m/sec, I, ~ 6 x 107%m), these field decay rates are sufficiently high for
the electric field in the channel walls to decay along the length of the piston
(Tdis = i—z ~ 3 x 107 8sec) so as to admit significant difference in the magnitude of
the electric field between the leading and trailing edge of the piston; therefore, the
a priori estimate of ((a? —a3) = 0.5) is plausible. A similar conclusion is supported
by evaluation of the exponential decay model (in (9.6)). Overall, the time scale
ordering developed earlier (7g;s < Tree < Tosc) 18 reasonably well satisfied.

The viability regime depicted in Figure 9.11 is favorable to ohmic treatment of
the piston and channel. The piston acts as a sliding electrical resistor — essentially
a motor brush — between the positive polarity n-region and the negative polarity p-
region, as depicted in Figure 9.12. The piston’s electrical resistance can be written
as

Lz =2 2 1l 2

iston — 2 c — - | = -
Rp ‘ Rb 2R lylz Tp fcac] lylz [Ub fcac

] (9.10)

where Ry[€] is the electrical resistance of the piston bulk (contacts); oy [(Qm) ]
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is the electrical conductivity of the bulk (contact) material; and . is the a-length of
the contacts. It is assumed that I, < Iz ~ 24. The values of the [, and f, are both
small and offset one another, while o, can in principle be varied over many orders
of magnitude such that R. can be made negligible compared with R;. Consider,
for example, the standard device with a silicon piston lined with graphite, oper-
ating with the following parameters: I, = 3004, ly = 6004, I, = 10*A, I, = 54,
op = 100g; =4 x 1073(Qm) L, ¢ = ograpnite = 7.1 x 101(Qm)~1, and f. = 1072
With these parameters, one has from (9.6-9.10): R ~ 103Q > R. = 2.5 x 103Q
and (aes = 6.7 x 10"m/sec?) > (a, = 6.5 x 10"m/sec?) > (a5 = 1.9 x 10°m/sec?)
> (apr = 1.2 x 105m/sec?). Ohmic losses for this system, concentrated in the
piston region, can be engineered to be insignificant.

For objects in this size range, the effect of statistical fluctuations should be
considered, especially since they have been the foil of many past challenges. Earlier
analysis indicates the standard device can be modeled as an R-C network, so it is
appropriate to consider fluctuations in electronic charge. Charge is also naturally
salient since it is through charge-induced electric fields that the system is powered.
Spectral analysis in the spirit of the Nyquist and Wiener-Khintchine theorems [14]
allows one to write the rms charge fluctuation for a resistor capacitor system as
V< AQR? > = AQpms ~ VARC?ETAf, where C is capacitance of the J-II region
and Af is the spectral width of the fluctuations measured. Taking characteristic
values for the standard device (R = 10°Q, C' = % = 10715F, Af ~ fose ™~
5 x 10Hz, T = 300K), one obtains AQm,s ~ 2 electronic charges. Since the
total charge in the standard device’s J-II region is found to be Qiotar =~ 330g,
one expects less than one percent statistical fluctuation in electronic charge over
the entire J-II channel capacitor during a piston’s oscillation period. Since the
fractional statistical fluctuation is much less than the fractional change in charge
due to electrical operation of the piston itself (0.01 ~ fg;’;f, < AAQt:; -~ 0.4),
by this measure, statistical fluctuations should not play a primary role in the
operation of the standard device. A similar conclusion can be reached by equating
the thermal energy to the piston’s kinetic energy.

Assuming that as is constant in magnitude and that a.s > ay, the average
power per cycle can be shown to be < P,y >= mpiston(2agLy)1/2 ~ 2 x 1079W,
where mpiston = psilalyl, is the mass of the piston. The average power densities
for the standard device are, therefore, Pog ~ 2 x 10°Wm™3. The standard device
appears capable of producing significant output power and power densities in the
presence of realistic levels of friction, while satisfying the conditions for classical
electrical conductivity, providing substantial numbers of guide/contact atoms, and
overcoming statistical fluctuations.

In Color Plates VIa,b power (W) and power density (Wm™2) are explored for
a range of device sizes, scaled in direct physical proportion to the standard device
(ie., ly = 2l,, L, = 5l,, I, = 33.3l;, etc.). The other physical specifications of
the standard device are retained (i.e., silicon matrix, No = Np = 102'm~3, etc.).
The previously discussed viability bounds (Figure 9.11) are still enforced. In Plate
VIa, the maxima of the power curves (Figure 9.8c) are calculated over an extended
viability regime (as in Figure 9.11) and plotted versus I, and f.. Power contours
extend linearly in value from a maximum of 1.2 x 108 W /device (yellow, center)
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down to 1 x 1072 W/device (red). The star indicates the location of the standard
device.

Perhaps a more meaningful figure of merit than maximum power per device
(Plate VIa) is maximum power density (Wm™2). It is a better indicator of how
rapidly thermal energy can be transformed into work by a given volume of working
substance; thus, it is a better measure of how significantly this device challenges
the second law. In Plate VIb, maximum power density (Wm™3) is presented for
a range of devices versus f. and x4, scaled as before in direct physical proportion
to the standard device. Whereas in Plate VI the contour values vary linearly with
adjacent contours, in Plate VIb they vary logarithmically in value from 10'°°Wm™3
(left-most, yellow) to 10 Wm™3 (right-most, red). Again, the standard device is
located by the star. The greatest power density obtains for small devices, while
the greatest unit power obtains for larger devices.

The parameter space available for this device (spanned by x4, Zgev, Na, Np, T,
etc.) is far greater than can be explored here, and only modest attempts have been
made to optimize the performance of the standard device. Nonetheless, it appears
the theoretical instantaneous power densities achievable by it are sizable. To put
this in perspective, one cubic meter of standard devices (amounting to 10'® in
number) could, in principle, convert thermal energy into work with instantaneous
power output on par with the output of a modern-day nuclear power plant; or,
in 1 second, produce the work equivalent of the explosive yield of 500 kg of high-
explosive. This, of course, is only instantaneous power density since, were the
device to convert thermal energy into work at this rate without compensatory
heat influx from the surroundings, the device would cool at an unsustainably fast
rate of about 100 K/sec.

More advanced designs for the motor can be envisioned. For example, the
linear standard device could be circularized. This rotary motor would consist of
concentric cylinders of n- and p-regions (the stator) joined at their base (to create
a depletion region) and having a gap between them in which a multi-piston rotor
runs. Multiple rotor pistons could be yoked together so as to balance radial forces
and torques. In the limit of large radius, the rotor pistons would move in what is
essentially a linear track, so the above discussion for linear motors should apply.
The rotor pistons would be driven by the local electric field energy in the cylindrical
gap. If they are spaced sufficiently far apart azimuthally, then the field in the wake
of a given piston could thermally regenerate in time to power the advancing piston.

9.4 Hammer and Anvil Model
9.4.1 Theory

A more immediate laboratory test of the thermal capacitor concept appears fea-
sible, one sidestepping the high-tolerance micromachining required of the LEM.
This will be called the hammer-anvil. It is a thermally-charged semiconductor
parallel-plate capacitor, with one plate fixed and the other mounted on a flexi-
ble double cantilever spring. For mechanical @ > 103, and for matched electrical
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and mechanical time constants (7. ~ 7,,), the system can execute steady-state,
resonant oscillation by which thermal energy is converted into mechanical energy.
An example based on Sandia National Laboratories” SUMMITT™ process is ex-
amined, however, more advanced designs are possible. As for the standard device,
the hammer-anvil relies on the depletion region of a n-p junction to establish a po-
tential difference and electric field in the active, open-gap region at the middle of
the device. This device can be constructed within present-day NEMS and MEMS
fabrication art and so represents a more immediate and cogent challenge than the
LEM.

NEMS and MEMS cantilever oscillators have many proven and potential ap-
plications, including as accelerometers, motors, clocks, sensors (e.g., tempera-
ture, pressure, electronic charge, magnetic fields, environmental contaminants,
microbes), beam steerers, choppers, and modulators, computing elements, and
switches [15, 16, 17]. These are usually driven by AC electrical signals whose
frequencies are commensurate with their mechanical oscillation frequencies, but
under suitable circumstances, DC signals can also effectively drive them. Ow-
ing to their utility, the art of NEMS-MEMS cantilevers is relatively advanced.
DC-driven, resonant micro-cantilevers have been explored [18].

Consider the macroscopic electromechanical device pictured in Figure 9.13a,
consisting of a battery (1), resistor (R), and a variable capacitor in which the
bottom plate (the anwvil) is fixed, while the top plate (the hammer, mass m) is
supended from a conducting spring with spring constant k. This will be called the
hammer-anvil. It is a hybrid of well-known mechanical and LRC oscillators. The
hammer is free to move with respect to the anvil and when they contact any accu-
mulated charge on the plates is assumed to flow between them without resistance.
The electrical capacitance of the device varies with the dynamic separation of the
plates according to

Cly) = _ A

Ygap — Y
where A is the area of the plates, y = 0 is the static mechanical equilibrium position
of the hammer, y4q, is the equilibrium separation of the plates, and y = y(t) is
the instantaneous position of the hammer, with the positive direction downward.
For convenience, we denote by C, = ;‘]’T‘i the capacitance when the spring is in its

, (9.11)

undeflected equilibrium state.

Two independent time constants characterize this system: one electrical (7, ~
RC,) and one mechanical (7, = 2m/). The electromechanics of the hammer is
described by the coupled pair of equations:

q2

1
F = Fyiss + Fs + Fes =mjj = — =9 — ky — , 9.12
diss + By o+ Feg =mij = =5§ —ky =5 — (9.12)
where the instantaneous charge on the plates ¢(t) satisfies:
. q —y),\1
q= (Vo - (ygap y)) ; q < Gsat, (913)

€A R’

and ¢ = 0 for ¢ > ¢sq:- Here the rhs of (9.12) gives of the dissipative, spring, and
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Figure 9.13: Hammer-anvil electromechanical oscillator. (a) macroscopic device
schematic; (b) schematic of NEMS-MEMS device, with engineering dimensions.

electrostatic forces, respectively. gsq¢ is the maximum (saturated) charge on the
plates, set by geometry and composition of the plates.

This system is electromechanically unstable: if the charged capacitor plates
electrostatically draw together and electrically discharge, the attractive electric
field collapses, the spring retracts the plates, the plates recharge on time scale 7,
and the cycle can repeat. If the hammer’s mechanical oscillation time constant
(Tm ~ 2m+/m/k) is comparable to the circuit’s electrical time constant (7. ~ RC),
and if the mechanical quality factor, @,,, is sufficiently large, then the system can
execute resonant, sustained electromechanical oscillation, converting electrical into
mechanical energy.

A macroscopic laboratory model similar to Figure 9.13a was built and tested
(scale length ~ 50 cm); it validated the operating principles of this device. The
model consisted of a 60 cm long tungsten spring (spring constant k = 0.8 N/m)
attached to a mobile, circular capacitor plate (hammer, dia = 10 cm, m = 4 gm,
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Figure 9.14: Operational status (OS) of macroscopic laboratory model hammer-
anwil versus ratio of electrical and mechanical time constants (7./7,,). Legend: (1)
no oscillation; (2) sub-harmonic or super-harmonic oscillation; (3) nearly harmonic
oscillation; (4) harmonic oscillation. [19]

metallic), suspended above a fixed metallic plate, in series with a variable resistor
(5x10*Q < R <2 x 107Q) and power supply (500V <V, < 2000V). (A booster
capacitor (Cpeost = 21 F) was placed in parallel with the hammer-anvil capacitor
to allow 7,,, ~ Te.) As the resistance R was varied and the resonance condition
was met (7, ~ RC' ~ 2m,/Tt ~ 7,,,), the hammer-capacitor fell into steady-state
oscillation, while outside this regime, the oscillation either could not be started or,
if it was jump-started, the oscillation quickly died out.

Figure 9.14 depicts the operational status (OS)of the laboratory model at four
bias voltages (500V, 750V, 1000V, 1250V). Operational status levels 1-4 on the
ordinate correspond to: (1) no oscillation; (2) sub-harmonic or super-harmonic; (3)
nearly harmonic; (4) harmonic oscillation. The abscissa gives the ratio of electrical
to mechanical time constants (7. /7., ), adjusted via the variable resistor R (Figure
9.13a). These are response curves comparable to those of typical forced resonant
oscillators. As expected, Figure 9.14 indicates harmonic response (0S-3,4) at
Te/Tm ~ 1; and non-harmonic response elsewhere. The best resonance shifts to
higher 7./7,, values with increasing bias voltage. The OS-2 and OS-3 plateaus
broaden with increasing bias voltage; this is consistent with the oscillator being
driven harder and, thus, requiring less stringent (7./7,,) criterion to achieve gap
closure. Similar peak broadening is predicted for the MEMS and NEMS hammer-
anvil.
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9.4.2 Operational Criteria

This macroscopic oscillator should scale down to the micro- and nanoscopic realms.
Force equation (9.12) still applies, but with the addition of a van der Waals force
term:

HA

_— .14
67T(ygap - y)37 (9 )

E}dW =

where H is the Hamaker constant (H = 0.4 — 4 x 107'%J for most non-polar
materials; for silicon Hg; = 10719J).

Consider the p-n device Figure 9.13b, a microscopic version of the hammer-
anwil, consisting of two p-n diodes (columns) on either side connected on top
to a block of n-type material suspended by two flexible cantilever springs over
the central p-type base. Comparing Figures 9.13a and 9.13b, the top-center n-
semiconductor mass in Fig 13b acts as the hammer in Figure 9.13a; likewise, the
lower stationary p-semiconductor in Figure 9.13b acts as the lower, fixed anwil.
The spring is replaced by a double cantilever. For long, thin cantilevers (t. < I.)
and for small vertical displacements (ygqp < l.), a linear spring constant can be
defined: k = %[%]3 where [, I, and t. are length, width, and thickness, and Y’
is Young’s modulus (Ysizicon = 1.1 % 1011N/m2). The entire device can be regarded
as a distributed network of resistors and capacitors; the long, thin cantilevers can
dominate device resistance. The column depletion regions impose the built-in
voltage across the central gap, similarly as for the p-n diode in Figure 9.1.

The electric field across its central gap provides negative electrostatic pressure
which drives and sustains the mechanical oscillations. For sustained oscillation,
three fundamental criteria must be met:

(i) The electrical and mechanical time constants must be comparable
(Te ~ Tm) to achieve electromechanical resonance.

(ii) The hammer’s mechanical energy gain per cycle (A&.s) must equal
or exceed its mechanical dissipation (A&y;ss), otherwise the oscillation
will damp out; and

(iii) The cantilever spring force retracting the hammer after contact
with the anvil must exceed the maximum attractive forces (van der
Waals + electrostatic), otherwise the hammer will stick to the anvil.

We will address each criterion separately, then combine (ii) and (iii) into a more
general, combined criterion.

Criterion (i) (e ~ Tm): The electrical time constant 7, for the p-n hammer-
anvil junction (Figure 9.12b) should be on the order of the inverse-slew rate of a
comparably-sized p-n diode.This is typically 107% — 10~8s for micron-size silicon
diodes, corresponding to frequencies of f ~ 1—100MHz. The approximate resonant
mechanical frequency of a double-cantilever is given by:

Y t.
o~ By — <, 15
o~ By (9.15)



296 Challenges to the Second Law

where B, is a constant of order unity, and p is the mass density of the cantilever
(psi = 2.3 x 10® kg/m?3). For comparison, a silicon cantilever of dimensions ¢, =
10~%m and I, = 10~°m should have a resonant frequency of approximately f,, ~
108Hz. (The mass of the hammer could lower this frequency.)

Since f,, can be made comparable to f., the first criterion appears capable
of being met by NEMS or MEMS systems. Mechanical resonant frequencies for
cantilevers in excess of 10 Hz have been achieved, however, the quality factors
(Q) of these are significantly reduced, possibly due to dissipative surface states
which can dominate the physics at short distance scales [20, 21]. (For initial tests,
fe should be minimized so as to minimize f,, since this would imply physically
larger devices, which are generally easier to fabricate and diagnose; also, larger
devices imply larger Q,,, which should reduce power requirements.)

Criterion (i) (Work versus dissipation): Criterion (ii) requires that the energy
gained through electrostatic work on the hammer per mechanical cycle (A&.s)
exceed the mechanical dissipation per cycle (A€yss). The relatively small sizes
of the electrostatic and dissipative forces compared with the mechanical spring
forces allow use of the harmonic approximation, which yields a closed-form integral
solution to the coupled equations (9.12) and (9.13). Thus, we assume the hammer
executes lightly-damped (Q > 1) simple harmonic motion: y(t) ~ ygapcos(wot),

with w, = 4/ % Substituting this into (9.13) yields an uncoupled equation for the
evolution of the electric charge on the capacitor plates:
(1 —cos(wot)) V,

' -0 9.16
A T B (9.16)

whose solution for homogeneous initial conditions is found to be

q(t) =

V, ort. t, (" ' 27’ V, !

Tresplnsin() 2] [ expl—nsin(Z)ar' = 2 exply(n)] | espl-g(r)Jir
(9.17)

where 7, = 27 /w,, and £ = 772, and g(t) = [k sin(%)— Tie] Here 7. = RC, need

not be an RC time constant as for the macroscopic oscillator (Figure 13a); rather
it will likely be set by microscopic thermal processes, for instance, charge carrier
diffusion, generation and recombination rates. The type, doping, and temperature
of the semiconductor should have a strong influence on 7; for example, GaAs
should have significantly shorter time constants than Si.

The Gaussian parallel plate approximation F' = —Z; allows the electrostatic

o
energy gain over one period of mechanical oscillation 7,,, to be written as

8= §Fdyt) = [T EOE Dy D (08)

260 m m

Meanwhile, for lightly-damped oscillators (Q,, > 1), the dissipation can be ex-
pressed in terms of @, as:

AEigq & — 2990 (9.19)
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Combining (9.18) and (9.19), the second criterion can be written:

Tm
Abes _ ¢ / () sin(i)dt. (9.20)
A&jiss 27T€onkygap 0 Tm

Resonant oscillation develops only for 7. ~ 7,,. Away from this condition
(either 7,,, > 7, or 7, < T¢), it can be shown (taking 7. — 0 or 7. — o0 in
(9.17)) that the electric field becomes essentially static, so there is no net energy
gain per cycle (A&.s — 0), while AE;ss remains constant (See (9.19).); thus the
oscillation damps out. In the regime 7, ~ 7,,, however, the asymmetry critical to
resonance is realized: more work is performed on the spring by the field during
gap closure than is work performed by the spring against the field on gap opening.
It is also required that the @ of the oscillator is sufficiently large that the energy
gain per cycle exceeds the energy loss per cycle. For lightly damped oscillators,
oscillation can be sustained by minimal energy input.

Criterion (iii) (Non-stick hammer): The third criterion arises from the dispar-
ity in magnitude and spatial variation of the strengths of the forces acting on the
hammer. For systems of interest, dissipative and electrostatic forces are subor-
dinate to spring and van der Waals forces over the critical distances near where
the hammer makes contact with the anvil. For the hammer not to stick to the
anvil, the spring force at y = y4qp must exceed the sum of the electrostatic and
van der Waals (vdW) forces at the latter’s cut-off (saturation) distance, typically
Yeut—off ~ 1.6 x 107%m, roughly an atomic radius. In this model, the dissipa-
tive and electrostatic forces act mechanically non-conservatively and can be of the
same order of magnitude. The spring and vdW forces, on the other hand, are
conservative and vary spatially with significantly different power laws and intrin-
sic strengths; while the spring force varies as Fs ~ y, the vdW force varies as
Foaw ~ [Ygap — y] 3. Because of the latter’s stronger spatial dependence, it can
exceed the spring force at small gap distances — leading to stiction — unless steps
are taken. Varying surface composition, one can alter the vdW force magnitude
roughly over an order of magnitude via the Hamaker constant, but it can be most
directly and easily reduced by reducing the contact area between the surfaces.

Since the parameter space for viable hammer-anvil oscillators is quite broad,
for the sake of clarity and because experimental prototypes will most likely be pur-
sued first in the MEMS regime, we will restrict much of the following discussion
to parameters closely aligned with a well-known and specified MEMS production
standard: the SUMMITT™ process as developed and supported by Sandia Na-
tional Laboratories.

In Color Plate VII the principal forces exerted on the hammer (excluding dissi-
pation) are plotted versus gap opening for three typical oscillators, as specified by
cantilever length (10-90um). The electrostatic force is given for V, = V4; = 0.6V,
with an electric field saturating at a maximum strength of 2 x 107V /m, similarly
as for the p-n standard device. (This follows the conservative assumption that
the vacuum gap electric field strength will remain below the dielectric strength of
silicon (3 x 107V/m). It should also render a conservative (under-) estimate of
actual device performance.) The vdW force is presented for five values of surface
contact fraction (10~* < < 1). (For optimal designs of the hammer-anvil, n can
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be up to about 1 ~ 1072, indicating 1% direct physical contact between hammer
and anvil surfaces.)
The third criterion can be written Fys > F,qw + Fes, Or

HnA oE2 A
3"7 € max (9.21)
67Tycutfoff 2

kYgap >
Since F.; < Fyqw in the contact region, the third criterion can be reduced to:

67Tkygapy3ut—off S
HnA

If one sets the third criterion ((9.22)) to equality and combines it with the
second criterion ((9.20)), one obtains a combined criterion

1 (9.22)

@ /0 " 2 sin(-)dt > 1 (9.23)

2
AreTmkYgap Tm

If one extracts the dimensional term ¢? from the integrand, assumes the integral
resolves to order one, and re-expresses slightly, then a general dimensionalized
condition for steady-state operation of the oscillator can be written:

67Tyg’ut_off€oE,2an @ Electrostatic Pressure
nH 1 van der Waals Pressure

>1 (9.24)

This general condition is the product of two simple ratios. The pressure ratio
incorporates the pressure driving the oscillation (electrostatic) and the ‘stiction
pressure’ (van der Waals), while the other ratio indicates the importance of min-
imum dissipation (@) and minimum surface contact (7). Interestingly, the spring
force, which figures prominently in both criteria (ii) and (iii), drops out of this
combined criterion entirely.

9.4.3 Numerical Simulations

Numerical simulations using MatLab and commercial semiconductor device sim-
ulators verified the principal results of the 1-D model of the dc-driven resonant
oscillator. T'wo-dimensional numerical simulations of the hammer-anvil, performed
using Silvaco International’s Semiconductor Device Simulation Software [Atlas (S-
Pisces, Giga)], verified the equilibrium aspects of the system’s electric field. Out-
put from the simulations were the steady-state, simultaneous solutions to the Pois-
son, continuity, and force equations, using the Shockley-Read-Hall recombination
model. Simulations verified that the magnitude of the open-gap electric field can
exceed that of the local depletion region by almost an order of magnitude, topping
out in excess of 2 x 10"V /m, similarly as for Color Plate IVb. Although the gap
volume is significantly less than the depletion region volume (ygap < yar), since
electrostatic energy density is proportional to E2, the electrostatic potential energy
of the open gap can significantly exceed that of the depletion region. Numerical
simulations also verified that the electric field and electrostatic energy in the gap
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is lost upon gap closure as a new depletion region forms. Like the standard device
earlier, the hammer-anvil constitutes a microcapacitor that can be discharged by
gap closure.

The electrostatic pressure P, for the open-gap hammer-anvil with even modest
biasing (e.g., Vhias = 0.6V) will be at least P ~ 10°Pa. In principle, this can be
supplied by the built-in potential, (Vi;as = V3:). Although the absolute electro-
static force exerted on the hammer is small, under Criteria (i-iii) it is sufficient
to resonantly drive and maintain a high-Q oscillation. NEMS-MEMS cantilevers
have documented Qs as high as Q ~ 10° in vacuum [20]. This implies that a small
energy gain per cycle (~ 1075 total mechanical energy) should be sufficient to
sustain oscillation. In Plate VIII is plotted a range of viability for hammer-anvil
devices constructed with physical dimensions achievable with the SUMMiTTM
process, and identical with the [, = 30um case from Plate VII. Plate VIII presents
minimum bias voltage required for sustained mechanical oscillation consistent with
Criteria (i-iii) and realistic physical parameters for silicon based devices. Voltages
are plotted as a function of quality factor @) and the ratio of electrical to mechani-
cal time constants (= ) Equipotentials (0.6V - 90V) are overlayed for comparison.
Simulations are bounded above by the condition: @ < 10. Other areas not col-
ored represent unviable regions of parameter space wherein the device requires a
net input of reactive energy to oscillate, above and beyond the work required to
offset presumed dissipation.

Plate VIII, as expected, indicates that the hammer-anvil performs most effi-
ciently — i.e., at the lowest dc-voltage — at the resonance condition (= ~ 1) and at
large Q values Away from these, either large driving voltages are requlred (e.g.,
Vo =50V for Z= ~ 1071, Q ~ 103) or else the device fails entirely (e.g., 7= ~ 20,
Q ~ 10%). In the sweet spot of Plate VIIT (0.25 < Z= < 4,2 x 10* < Q < 109),
the device can be driven at relatively low voltages (1V< Vs <5V) and should have
a resonant electromechanical frequency of about f ~ 1MHz. Note it should be
viable using V, = V},; ~ 0.6V. This device is almost macroscopic in size (maximum
dimension ~ 0.1mm) and can be fabricated within the current art of MEMS tech-
nology. Analysis shows that this device should scale down well into the sub-micron
regime and operate well at biases comparable to standard built-in voltages.

The most sensitive device dimensions and tolerances occur in the hammer-
anvil gap. Optimal gap width will probably be less than 0.1 pm. The contacting
surfaces must be highly parallel and their morphology must be tightly controlled
so as to meet the condition of low contact fraction (n < 1). Contact wear is
inevitable and may place limits on the total number of oscillations the device can
execute [22, 23].

The hammer-anvil envisioned here will almost certainly require a kick start
since the maximum achievable electrostatic pressure, although sufficient to sustain
oscillation, appears insufficient to intitiate it. The kick start might be delivered in
a number ways, including: a) a large, transient dc voltage spike across the gap; b)
a small, short-lived, resonant, ac tickler voltage; or c) piezoelectric ac mechanical
drive of the entire device. Device operation might be monitored either by laser
interferometery of the hammer’s motion, or by coupling its vibrational energy to
piezolectric sensors. The latter would be propitious since, in principle, a piezo
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could be used both to jump start the oscillation and also to detect it.

9.5 Experimental Prospects

Prospects are good for laboratory construction and testing of these solid-state
electromechanical devices in the near future?. Present-day micro- and nano-
manufacturing techniques are adequate to construct the necessary structures, how-
ever, the art of surface finishing, which is crucial to reducing friction and stiction,
may not yet be adequate, particularly for the LEM. State-of-the-art molecular
beam epitaxy can reliably deposit layers to monolayer precision, but control of
surface states is still problematic. Self-assembly of the requisite surfaces is plau-
sible. Large scale biotic systems (e.g., DNA, microtubules) are well-known to
self-assemble with atomic precision, as are abiotic ones (e.g., carbon nanotubes
[11, 12]). Molecularly catalysed construction (e.g., RNA to protein transcription
inside ribosomes) is accomplished with atomic precision. Scanning tunneling mi-
croscopes have also been used to assemble complex systems atom by atom. In
light of these accomplishments, it seems plausible that experimental tests of these
solid-state challenges may be on the horizon. We predict laboratory tests for the
LEM will become feasible within 5 years; tests of the hammer-anvil concept are
feasible today. Such tests are currently being pursued by the USD group.

2 Capacitive Chemical Reactor: One can also conceive of non-mechanical challenges emerging
from the thermal capacitor concept [24]. Consider gas molecules, having ionization energies less
than the work function of the semiconductor, infusing the J-II gap (Figure 9.1). The neutral
gas molecules positively ionize at the positive gap surface (n-side), then desorb, at which time
the gap electric field accelerates them across the gap up to superthermal energies (¢V4; > kT).
(Likewise, gas molecules with large electron affinities could form negative ions at the p-side and
accelerate in the opposite direction. Together, positive and negative ion fluxes would constitute
a diffusion current that is otherwise forbidden by the vacuum gap.) The positive ion current
is unidirectional since, with ¢Vj; > kT, once an ion crosses the gap it cannot return until it is
neutralized. The ion kinetic energy is sufficient to drive chemical reactions (or at least catalyse
them). In principle, low-energy chemical reactants can enter the capacitor gap and emerge as
high-energy products. In this way, chemical energy can be created solely from heat (via the gap
electrostatic energy) — this in conflict with the Kelvin-Planck form of the second law.
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10

Special Topics

Four special topics are discussed: (i) two proposals for a common rubric for classi-
cal second law challenges; (ii) speculation on a third type of life — thermosynthetic
— which would sustain itself by converting heat into biochemical energy; (iii) spec-
ulations on the far future (physical eschatology); and finally, (iv) a collection of
quotations from the sciences and humanities pertaining to the second law.

10.1 Rubrics for Classical Challenges

Of the several second law challenges that have been advanced over the last
20-25 years, the majority have been forwarded as independent counterexamples,
narrow in their thermodynamic regimes of validity and specific in their physical
constructions. No attempt has been made to place all under a single theoretical
rubric. Perhaps such an enterprise is misguided. Just as the many attempts over
the last 150 years to produce a general proof of the second law have failed — it has
been proven only for a few highly idealized systems — so too, perhaps, a general
theory of second law exceptions might prove equally elusive. Surely, one valid
counterexample suffices to refute absolute validity, but finding the common thread
among the many would be both satisfying and useful to future investigations.

In this section, we explore the similarities among the several ostensibly dis-
parate challenges investigated at the University of San Diego (USD) since the
early 1990’s [1-9]. Several common threads bind them: geometric and thermody-
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System Temp (K) |Pressute | Power Density

(Tor) |  (W/m?)

Plasma I > 1500 <103 102

(clectrostatic)

Plasma I > 1500 <103 102

(chemical/ electrostatic)

Chetnical > 1000 <1 103

(chemical)

Gravitational >10 <1010 10?

(gravitational)

Solid State 100<T<1000| — >108

(chemical/ clectrostatic)

Table 10.1: USD challenges, comparing viable temperature and pressure ranges
and estimated power densities. MPG listed below the system name.

namic asymmetries, macroscopic potential gradients, and asymmetric momentum
fluxes. A notable theorem by Zhang and Zhang [10] asserts that the latter of these
threads should bind all second law challenges to date.

10.1.1 Macroscopic Potential Gradients (MPG)

Nearly all natural and technological processes are nonequilibrium in character
and can be understood in terms of a working fluid moving under the influence
of a macroscopic field expressible as the gradient of a potential. Examples are
endless: water falling from the clouds under gravity; molecular hydrogen and
oxygen combining in a fuel cell to form water; current in an electrical circuit.

For this discussion, potential gradient refers to any potential whose spatial
derivative is capable of directing a fluid in a preferred spatial direction (i.e.,
V® = —F) and can transform equilibrium particle velocity distributions into
nonequilibrium ones. Directional, nonequilibrium particle fluxes are the hallmarks
of standard work-producing processes. Macroscopic refers to length scales long
compared to atomic dimensions and to those of statistical fluctuations. In order
to extract wholesale work, a system’s potential gradients should be macroscopic.

Working fluids can be transformed from one MPG to another, descending a
ladder, starting from high-grade directed energy to lower-grade undirected energy
(heat), ending in a maximum entropy state (equilibrium). For practice, it is in-
structive to trace the million year journey of energy via various working fluids and
MPGs, starting from hydrogen fusion in the Sun’s core, to its release as light from
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the solar photosphere, its absorption by chloroplasts and conversion into carbo-
hydrates in Iowan corn fields, to its ultimate exhaustion as frictional heat as a
child pedals down a country road in rural Indiana after a breakfast of corn flakes.
Here one can identify a dozen different fluids and MPGs. It is fair to say that
nonequilibrium macroscopic potential gradients make the world go round.

So far, only nonequilibrium MPGs have been considered, but equilibrium MPGs
are also common. Whereas nonequilibrium MPG derive their energy from ex-
haustible free energy sources (e.g., nuclear reactions, sunlight, chemical reactions),
equilibrium MPG derive their energy from purely thermal processes (or none at
all). As a result, their exploitation to perform work can imply the use of heat from
a heat bath, and thereby a challenge to the second law.

Each USD challenge consists of (i) a blackbody cavity surrounded by a heat
bath; (ii) a working fluid (e.g., gas atoms, electrons, ions, holes); (iii) a work
extraction mechanism (e.g., electrical generator, piston); and (iv) an equilibrium
MPG (e.g., gravitational field, electric field of a Debye sheath or depletion region).
Work is extracted as the working fluid cycles through the potential gradient. On
one leg of its cycle the working fluid ‘falls’ through the MPG and is transformed
into a spatially-directed nonequilibrium flux, by which work is performed. On the
return leg, the fluid and system returns to its original thermodynamic macrostate
via thermal processes (e.g., diffusion, evaporation). The work performed by ex-
ploiting the MPG (either intermittently or in steady state) represents a large, local
excursion from equilibrium, but only a small excursion for the system globally. The
USD challenges range in size from nanoscopic to planetary (10~7 —107 m), operate
over more than an order of magnitude in temperature (100 - 2000 K), and over
more than 8 orders of magnitudes in pressure (~ 10% — 10=6 Torr). They span
chemical, plasma, gravitational and solid state physics.

A summary of the USD challenges can be found in Table 10.1, comparing their
viable temperature and pressure regimes, and theoretical achievable power densi-
ties. The following is a summary of the equilibrium MPG that are discussed in
Chapters (6-9).

Plasma (Chapter 8; [1, 2, 3]) Electrons and ions at a single temperature have
different average thermal speeds (%)1/ 2. owing to their different masses. In a
sealed blackbody cavity, in order to balance thermal flux densities in and out of
the plasma, the plasma resides at an electrostatic potential (the so-called plasma
potential, Vi) with respect to the confining walls. This potential drop occurs
across a thin layer between the plasma and the blackbody walls, called the Debye
sheath (thickness Ap). Typical plasma parameters render plasma potentials up to

several times % and gradients of order VV ~ K—’g Sheath electrostatic gradients

of the order of 103V/m are common.

Chemical (Chapter 7; [4, 5, 6]) In a sealed blackbody cavity, housing a low den-
sity gas (e.g., A2) and two surfaces (S1 and S2) which are distinctly chemically
reactive with respect to the gas-surface reaction (2A = As), a chemical poten-
tial gradient can be supported, expressed as steady-state differential atomic and
molecular fluxes between the surfaces.
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Gravitational (Chapter 6; [7, 8]) All finite masses exhibit gravitational potential
gradients (gravitational fields) that can direct working fluids (gases) preferentially
along field lines. No thermodynamic processes are required to sustain this MPG.

Solid State (Chapter 9; [9]) When n- and p-doped semiconductors are joined
(forming a standard p-n diode) the requirement for uniform chemical potential
(Fermi level) throughout the diode, and the thermal diffusion of electrons and holes
down concentration gradients between the two regions, gives rise to an electrostatic
potential difference (built-in potential, V4;) between the two regions, across the so-
called depletion region (thickness z4.). One can say that, in the depletion region,
a balance is struck between electrostatic and chemical potentials. The equilibrium

electrostatic potential gradient scales as VV ~ X’;, which for typical p-n diodes is
on the order of % = 10°V/m. (The similarities between the plasma and solid

state systems is not coincidental.)

The above equilibrium MPGs and their working fluids possess all of the re-
quired physical characteristics by which standard nonequilibrium, free-energy-
driven MPGs are known to perform work in traditional thermodynamic cycles.
The equilibrium MPGs are well understood and experimentally verified; all are
macroscopic structures. They possess potential gradients of sufficient magnitude
and directionality to overcome thermal fluctuations and to perform macroscopic
work. They differ from their nonequilibrium counterparts only in that they are
generated and maintained under equilibrium conditions.

If MPGs are so common, it is natural to ask why their aptitudes for challenging
the second law were not discovered earlier. First, the thermodynamic regimes
in which they thrive are extreme (e.g., high-temperatures and low-pressure for
chemical and plasma systems) or else their operational scale lengths are either too
large (planetary for gravitator) or too small (sub-micron for p-n diode) to be easily
studied. Furthermore, the paradoxical effects are usually secondary in magnitude
to other system effects and must be carefully isolated.

Several of the MPG systems are thermodynamically non-extensive in the sense
described by D.H.E. Gross [11, 12]; that is, they are “finite systems of size com-
parable to the range of the forces between their constituents,” and they are “ther-
modynamically unstable.” Their energies and entropies do not scale linearly with
size — the hallmark of non-extensivity. This is most apparent in the plasma, solid
state, and gravitational systems, whose electric and gravitational fields energies
scale quadratically with field strength. (Recall, electrostatic energy density scales
as p x E2))

Boundaries are critical to these systems; without them they would either not
possess usable MPGs or could not utilize them, in which case they would not pose
second law challenges. And, because of boundaries, these systems should properly
be evaluated outside the usual thermodynamic limit assumptions of infinite particle
number and volume. Microcanonical approaches like those championed by Gross
might be more fruitful [11, 12].
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10.1.2 Zhang-Zhang Flows
In 1992, Kechen Zhang and Kezhao Zhang (hereafter Zhang-Zhang) [10] demon-
strated a number of new aspects to Maxwell demons within the framework of
classical mechanics. These were developed in the context of what they termed
spontaneous momentum flows (SMF). A SMF is a sustaining and robust momen-
tum flow inside an isolated mechanical system. All qualifiers must be simultane-
ously satisfied. The momentum flow must arise spontaneously within the system
without resort to internal exhaustible free energy sources or to external sources of
free energy. It must be robust in the sense that minor perturbations do not destroy
it and it must be able to restore itself if it is interrupted. It must be sustaining in
the sense that the long-term average of the momentum flow is non-vanishing.
Zhang-Zhang show the second law can be formulated in terms of the nonexis-
tence of SMF. They begin by arguing that [10]

(i) the existence of a perpetual motion machine of the second kind
implies the existence of SMF; and the existence of SMF implies the
existence of a perpetual motion machine.

They demonstrate that “the Kelvin-Planck statement of the second law is
equivalent to the statement in any isolated system, no spontaneous momentum
flow exists.”

From here, Zhang-Zhang prove a nonexistence theorem for SMF for classical
systems of N interacting point particles, defined through the force equation:

mii;iZFi<r1,...rN;f'1,...f‘N)7 (101)

where r; and 1; are the position and velocity of the i mass m;. The Zhang-Zhang
theorem shows that a system of N interacting point particles cannot harbor a SMF
under two conditions:

(i) Its energy function E is symmetric under momentum reversal, i.e.,
E(qi,pi) = E(qi, —pi), where ¢; and p; are generalized coordinates and
momenta; and

(ii) Its phase space volume d2 = dg;...dgndp;...dpy is temporally in-
variant.

The theorem does not require system ergodicity, although it applies equally well to
the ergodic case. It is valid for classical systems; its demonstration in the quantum
realm has not been pursued.

Using the Zhang-Zhang theorem, one can immediately discount challenges
which demonstrate symmetric and invariant measure on their phase space en-
ergy surfaces. Zhang-Zhang develop an example of a purported Maxwell demon
governed by the Lorentz force

mi = q(f x B(r)) — ¢V¢(r) (10.2)
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and show that, since the phase space volume of this system is preserved by its
dynamics, it cannot support a SMF — therefore, cannot violate the second law —
regardless of its complexity and intricacy of construction.

The Zhang-Zhang theorem demonstrates the deep relationship between the
second law and phase space volume invariance of classical systems. They state:

... the validity of the second law relies on the dynamics in the under-
lying mechanical system, [but] this validity cannot be justified by the
laws of classical mechanics alone. Invariance of phase volume appears
as an additional factor which is responsible for this validity. ... Look-
ing from another angle, if the second law is taken as a fundamental
assumption, then the invariance of phase volume may be considered as
a constraint imposed by the second law on the allowable dynamics of
the mechanical systems.

Independently of Zhang-Zhang, in 1998 Sheehan [13] explained the necessary
and sufficient conditions for the several USD challenges in terms of asymmetric
momentum flures. He noted that each challenge relies on two broken symmetries —
one thermodynamic and one geometric — in the physical design of the system. The
broken thermodynamic symmetry creates an internal, steady-state asymmetric
momentum flux and the geometric asymmetry converts this flux into work at the
expense of the heat bath. Sheehan’s asymmetric momentum fluxes are equivalent
to the Zhang-Zhang spontaneous momentum flows. More recently, it has been
recognized that the asymmetric momentum fluxes common to the USD systems
arise due to macroscopic potential gradients (MPG), as discussed above (§10.1.1).

In their article, Zhang-Zhang assert “the concept of SMF is an imaginary one
since no known physical systems exhibit it.” The several challenges in this volume
stand as counterexamples to this claim. As derived, the Zhang-Zhang theorem
is descriptive of all classical challenges to date, but rather than refuting them,
it gives insight into their common basis. We suspect that deeper physics will be
eventually uncovered linking them further. Attempts to fathom this deeper physics
behind the second law have begun [14].

10.2 Thermosynthetic Life

10.2.1 Introduction
In this section the hypothesis is explored that life might exploit second law vio-
lating processes. All evidence will be theoretical and circumstantial since there
is no experimental evidence that life violates the second law in the least, either
macroscopically or microscopically. Quite the contrary, life is often considered to
be a strong ally of the second law since biotic chemicals typically generate far more
entropy in the world than they would otherwise create in an abiotic state.

It is estimated that since the emergence of life on Earth roughly 3.8 - 4 billion
years ago, on the order of a billion species have existed and that, of these, roughly
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10 million currently exist. Of this extant 1% of total species, perhaps only about
20% have been identified by name. Of those identified, few have been studied well
enough to make general claims about their thermodynamics; however, those that
have been studied carefully have shown compliance with the second law. In highly
studied species — for instance, E. coli, C. elegans, mice, monkey, men — only a
small fraction of proteins and biochemical pathways have been thoroughly studied.
(Human are estimated to contain roughly 32,000 genes and about 10° proteins
of which less than 10% have been positively identified.) Despite this apparent
dearth of biochemical knowledge, there is significant biochemical commonality
among species such that close study of a few should give an overview of the many.
Nonetheless, current understanding of biology and biochemistry across all species
is insufficient to rule conclusively that all biological processes, structures, and
systems comply with the second law.

Several theoretical proposals for second law challenges have been inspired by
biological systems. Modern work in this area dates back 25 years to the seminal
proposals of L.G.M. Gordon (§5.2). The Crosignani-Di Porto mesoscopic adiabatic
piston (§5.4) suggests that the second law might fail at scale lengths characteristic
of living cells. There are suspicions by many that if the second law is violable, life
would have exploited it.

The exigency of natural selection — whatever survives to reproduce survives
— suggests that if subverting the second law confers a reproductive evolutionary
advantage on organisms and if the second law can, in fact, be subverted, then
the soaring cleverness, diversity and resourcefulness of Nature would, with high
probability, achieve this end. Since there are several imaginable scenarios in which
thermosynthetic life (TL) [15] would compete well with or even outcompete ordi-
nary free-energy life (FEL) by subverting the second law, it is reasonable to seek
biological violation. Standard FEL is divided into chemosynthetic and photosyn-
thetic forms; the former derives its primary energy from chemical processes, while
the latter relies on electromagnetic radiation (photosynthesis). Thermosynthetic
life, which would derive its energy from heat, would constitute a third distinct
type of life.

Basic characteristics of TL are suggested by thermodynamic considerations.
Multicellular life is less likely to exploit thermal energy than unicellular life because
it has an intrinsically lower surface-to-volume ratio and, thus, has access to less
thermal energy per cell than unicellular life. Therefore, thermosynthetic life, if
it exists, is most likely to be small and unicellular. The lower limits to the size
of organisms (viruses, viroids, and prions aside) is a subject of debate. Recent
studies suggest that it may be as small as 20 nm [16].

If TL must compete against FEL for material resources, then it will likely
be outcompeted under everyday circumstances where rich free-energy sources are
abundant, e.g., sunlight, plant and animal tissue, or raw energetic chemicals spew-
ing from hydrothermal vents. Pure TL would eschew these and so would be at a
severe energetic and evolutionary disadvantage. Thermosynthetic life might best
compete against FEL in free-energy poor environments; thus, it is also likely to be
anaerobic and isolated geologically and hydrologically from chemosynthetic and
photosynthetic life. This suggests TL might be best suited to life deep inside



310 Challenges to the Second Law

the earth. (In recent years it has become apparent that deep-rock microbes en-
joy significant diversity and might actually represent greater biomass than surface
dwelling life [17].) These environments can also be quite stable so as to allow TL
to evolve and thrive without direct competition from FEL for long periods of time.

Thermosynthetic life might have an edge in high-temperature environments.
First, higher temperatures imply higher thermal power densities to drive biochem-
ical reactions. Second, for reasons to be discussed shortly, high temperatures favor
some second law violating mechanisms. Again, deep subsurface environments fit
the bill. Temperatures rise with increasing depth in the Earth at a rate of roughly
1.5—3x 1072K/m. At depths of 5 km rock temperatures approach 400 K. If it ex-
ists in deep rock, TL is likely superthermophilic and hyperbarophilic. In deep-sea
hydrothermal vent environments, the high pressures augment thermophilic tenden-
cies by raising the boiling point of water and by compressing molecular structures
that might otherwise thermally disintegrate. In the laboratory, microbes have
survived exposure to pressures of 1.6 GPa (1.9 x 10%*atm). Microbes have been
discovered in continental rocks down to depths of 5.2 km [18]. The limit to the
depth of life is likely set not only by temperature and pressure, but also by the
pore sizes between rock grains, which are reduced at high pressures. It is expected
that pressure, temperature and pore size would disallow carbon-based life below
about 10 km.

In summary, if thermosynthetic life exists, it is likely to be small, unicellu-
lar, anaerobic, hyperbarophilic, superthermophiles confined to free-energy poor
environments, well isolated from FEL in long-term stable locations. Deep rock
microbes (Archaea) seem to be the best candidates, situated at and beyond the
fringes of where FEL is known to survive.

Archaea are among the most ancient life forms; current molecular evidence
based on RNA analysis places them near the base of the tree of life. (At present,
three domains are generally recognized: eukaryotes (cells with nuclei), bacteria
and archaea (cells without nuclei); the latter two display superthermophilicity.)
Among the most ancient archaea are hyper- and superthermophiles, suggesting —
but certainly not proving — that life may have originated in high temperature
environments, like deep-sea marine vents or in the earth’s crust.

The current high temperature record for culturable microbes is T = 394K,
set by Strain 121, an Fe(IIl)-reducing archaea recovered from an active “black
smoker” hydrothermal vent in the Northeast Pacific Ocean [19]. It grows between
85° and 121°C — temperatures typically used in autoclaves to sterilize labora-
tory equipment and samples. The upper temperature limit for microbes has been
estimated to be roughly 425K (150°C) [20-26].

Archaea and bacteria have many special adaptations for survival at high tem-
peratures. Unlike bacteria and eukaryotes which have lipid bilayer membranes,
archaea have monolayer lipid membranes (ester cross-linked lipids) that resist ther-
mal separation. Thermophiles also employ stiff, long-chain carotenoids that span
their membranes, thereby reinforcing them against thermal separation. Carotenoids
are highly conjugated organics also known for good electrical conductivity via long-
range, delocalized molecular orbitals. They can mediate direct charge transport
across membranes.
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Figure 10.1: Schematic of proposed biochemical machinery for thermosynthetic
life. Charge cycles clockwise: diffusively up through the pyramid and ballisti-
cally down the conduction ladder through the reaction center, where high-energy
chemical products are formed.

Another possibility is that standard FEL life may harvest thermal energy as
a supplement to standard free energy sources, or might resort to it under dire
circumstances when its traditional free energy sources are cut off. This suggests
that long-entombed and dormant microbes might be good candidates for TL. For
example, bacteria have been found to remain viable for millions of years trapped
in ancient salt crystals essentially absent of free energy sources and nutrients [27].

Thermosynthetic organisms would not necessarily be expected to arise ex nihilo
from abotic chemicals, but one can envision strong evolutionary forces by which
they might evolve from standard FEL. Free energy life, wherever it first evolved —
deep-ocean vents, surface, or deep rock — would naturally spread to all possible
habitable regions. Where conditions were not initially favorable, in time, evolu-
tionary forces would reshape the organism as far as possible. FEL would extend
deeply into subsurface environments — as has been discovered [17, 18, 25] — down
to the biochemical limits of heat and pressure, and to the lower limits of material
and free energy resources. One can imagine conditions at the limits of free energy
resources where FEL would face an evolutionary imperative to convert some (or
all) of its cellular machinery over to the reclamation of heat — if this is possible —
such as to push into regions uninhabitable by its competitors. As will be discussed
below, variants of standard cellular machinery (membranes, carotenoids, enzymes)
might be conducive to this enterprise.
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Figure 10.2: Charged biomembrane as a capacitor: a) Schematic of biomembrane
lipid bilayer; b) Lipid bilayer as parallel plate capacitor; ¢) Equipotentials in
biomembrane with finite point charges separated by %.

10.2.2 Theory

Here we consider the possibility that macroscopic potential gradients (§10.1.1, [15])
might be exploited by life to circumvent the second law. Consider a biochemical
system consisting of five parts, depicted in Figure 10.1: 1) membrane capacitor;
2) 3-D pyramidal array of charge transport molecules; 3) electrically conducting
molecular ladder spanning the membrane from pyramidal base to vertex; 4) chem-
ical reaction center for utilization of superthermal charge; 5) small number of
mobile charges (electrons or protons) that can circulate through the system.

One of life’s most basic biological structures is capable of supporting a MPG
and is also quite exposed to the thermal field: the cellular membrane. Particulars
of cell membrane vary considerably across life forms so we will consider archetypical
membranes consisting of ambipolar lipid layers. Simple polar lipids have a charged
functional group on one end of a long organic skeleton. These can self-assemble
electrostatically end-to-end to form a bilayer as shown in Figure 10.2a. Polar
molecules (e.g., water) outside the hydrophilic ends can stabilize the membrane,
trapping the hydrophobic, non-polar organic skeleton within. In principle, opposite
sides of the membrane can support permanent opposite surface charge densities.

Consider a planar section of membrane (Figure 10.2b) with fixed surface charge
density o. (These charges might be anions or cations fixed on the polar ends of the
phospholipids.) In the infinite plane approximation (I > d) the membrane acts
like a charged capacitor (Figure 10.2b). For biomembranes, typical scale lengths
are d ~ 1078m and [ ~ 10~%m. For our model membrane, let [ = 2 x 10~%m and
d = 10~"m. This structure (or multiple copies) could be sequestered within the
cell rather than be exposed on its outer surface.

The maximum charge density and steady-state voltage drop supportable by
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a biomembrane can be estimated from the dielectric strengths and compressive
strengths of typical organics. If the electrostatic pressure due to o exceeds the
material compressive strength, the membrane will collapse; if the the electric field
exceeds its dielectric strength, it will arc through. Taking the dielectric strength of
the membrane to be E,,q, = 107 V/m, dielectric constant x = 3, and compressive
strength to be 107N/m?, one finds that the maximum charge density supportable
on the membrane surface to be roughly oymer = K€oBmar = 2.5 x 10* C/m?
= 1.5 x 10 e~ /um?. (Estimates from compressive strength yields larger omq.-)
This ¢ implies that the distance between excess charges is roughly % ~ 2.5 X

10~8m~ 1d; thus, the majority of the molecules comprising the membrane need
not contribute to the net surface charge. The electrostatic equipotentials are fairly
parallel near the midplane of the membrane and are undulatory near the surfaces;
likewise the electric field vectors are parallel in the interior and less so near the
surfaces (Figure 10.2c). (Note that archaean cross-linked monolayer membranes
would be relatively good at retaining capacitive charge separation since membrane
molecules would be less likely to invert than standard bilayer lipids in bacteria and
eukaryotes. Cross-linking also adds structural strength.)

The maximum potential drop across the model membrane surfaces will be
on the order of V,, ~ E4.d = f’rg—d = 1V; for this model, let V,,, = 0.8V.
(This agrees quantitatively with common membrane potentials, scaled to mem-
brane thickness d = 10~"m.) An electronic charge falling through this poten-
tial would have roughly the energy required to drive typical chemical reactions:
qVim = AE ~ 0.5 —4eV. Electrons and protons should be the most convenient mo-
bile charges for this system; they are standard currency in biochemical reactions.
Low-energy chemical reactions have been exploited by life. For instance, forms
of bacterial chlorophyll have spectral absorption in the near IR, corresponding
to energies of roughly 1eV. The hydrolysis of ATP (adenosine triphosphate) into
ADP (adenosine diphosphate) releases roughly 0.56eV of free energy. ATP is the
primary energy releasing molecule in most cells.

In principle, multiple membranes might be stacked in electrical series and self-
triggered sequentially — the high energy charge from a previous step triggering
the subsequent one — so as to create a series-capacitive discharge with resultant
energy in multiples of a single membrane energy', AE. Or, each discharge could
create low-energy chemical intermediates that could be brought together to drive a
single, more energetic chemical reaction, similarly to how ATP is utilized in cells.
In this way, the energy necessary to drive even high-energy chemical reactions
might obtain.

It is biologically requisite that AE > kT for at least some biochemical reactions
because if they could all be thermally driven, none would be irreversible and the
organism would find itself essentially at thermal equilibrium — and dead. (Also,
unless AE > kT, molecules tend to thermally disintegrate.) A 0.8eV potential
energy drop across the membrane far exceeds the typical thermal energy associated
with life (kT'(300K)~ sseV~ 5=Vp,). At first glance, it seems improbable that

IMany species are known to utilize series-capacitive discharge, e.g., electric eels, rays, and
catfish, achieving up to hundreds of volts in total potential.
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Figure 10.3: Proposed charge transport in a biomembrane: a) Rotary molecules
transferring charge; b) Diffusive transport of electrons and protons between mem-
brane faces by A-D molecules, up electrostatic potential gradients; c) Energy dia-
gram for charge thermal transport and quantum transition in biomembrane.

thermal energy alone could drive charges up such a large electrostatic potential at
room temperature, but if accomplished in steps it is less daunting.

Let the model membrane be embedded with charge transporting molecules ar-
ranged in a 3-D pyramidal structure, as depicted in Figure 10.3a. The actual
molecular structure is unspecified — it could be simply a conductive-diffusive
molecular matrix — but for this model consider it to be composed of rotary
molecules, each with charge acceptor-donor (A-D) sites. The transport molecules
spin freely, driven by thermal energy. When two A-D sites meet a charge can be
transferred between them, with minimal energy of activation. This is taken to be
a random process. Once charged, the electric force within the membrane will tend
to constrain the rotor against charge movement up the potential gradient, but if
the step sizes are small (kT ~ ¢AV') and if the transfer probability favors diffusion
up the potential gradient either by favorable multiplicity of states, or in this case,
by a favorable multiplicity of transfer molecules in the direction up the gradient
(Figure 10.3b), then one can expect appreciable transport by diffusion alone.

Charge transport via diffusion can be placed on more realistic footing. Let
the membrane have area 12 ~ 4 x 107'?2m? and let the area of an individual A-D
molecule be 62 = (2 x 107%m)?. In the membrane depicted in Figure 10.2c, the
base of the molecular pyramid accommodates roughly (ls_"; ~ 105 molecules, the
vertex accommodates one; the pyramid consists of roughly 50 molecular layers.
At T = 400K, the electrostatic potential energy increase per level in the pyramid
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is roughly 0.6k7T, thus allowing charges to rise comfortably upward against the
gradient by thermal diffusion.

Applying Boltzmann statistics, the relative charge occupation probability (pre:)
for the base versus the vertex should be on the order of

Prel ™ (10.3)

Gbase e _E
P1TRT

Gvertex

Here gg‘;%, the ratio of multiplicity of states, is assumed to be the simple ratio of

A-D molecules at each site: ggv‘;ﬁ = é—z ~ 108. The energy difference AE = ¢V}, ~
0.8eV. Let the temperature be that survivable by the superthermophile Strain 121:
400K. These parameters render p.o; ~ 1073. (p,¢ can be increased by further
grading the quantum multiplicity of states in molecules toward the pyramid’s
base, for instance, by having more A-D sites per molecule at the base than at the
vertex, or by simply packing more A-D molecules in the array.) For comparision,
dropping the temperature by just 25% (T = 300K) reduces p,¢; by over three orders
of magnitude: p,.; ~ 4 x 1078. In all, despite a sizable potential difference (V;,, >
E), charges have reasonable probability of traversing the membrane by purely
thermal diffusive processes. The molecular pyramid creates a natural mechanism
for charge transport and also offsets the deleterious Boltzmann exponential.

Once a charge has climbed the electrostatic potential via multiple small, dif-
fusive sub-kT steps (Figure 10.3¢c), it can fall through the entire potential (base
to vertex) in a single, nearly-lossless quantum transition (¢V;, = AE) which, in
principle, could drive a chemical reaction at the reaction center (e.g., formation
of ATP). Quantum transitions that require large and specific energies cannot be
triggered prematurely (i.e., by thermal energy steps); furthermore, the reactions
can be triggered and mediated by structure dependencies, for instance, those that
might occur only at the membrane boundaries. Or, they could require the partic-
ipation of the reactants in the reaction center to complete the circuit. Thus, the
multiple low-energy thermal transitions up the pyramid can be insulated from the
single high-energy transition down the ladder.

Charge transfer from the pyramid’s base back to its vertex can be plausibly
executed across the thickness of the membrane (d = 10~ "m) along electrically con-
ducting polymers. Aromatic and highly conjugated organics that span the entire
membrane are the most promising candidates. Carotenoids are highly conjugated
linear organics that are known to be electrically conducting and are also found in
the membranes of thermophilic archaea, presumably to give structural strength
against thermal disruption. Individual conducting organic molecules have demon-
strated electron transport rates of roughly 10'!/sec and current densities far in
excess of the best metallic conductors [28]. The directionality of the current might
also be promoted by fashioning the conduction ladder as a molecular electronic
diode [28, 29, 30]. These have been engineered [28] by attaching electron-donating
and electron-withdrawing subgroups to a conducting carbon skeleton. Biological
counterparts are conceivable.

Electrons falling down the conducting ladder to the reaction center in Fig-
ure 10.1 could drive useful biochemical reactions since their energy is far greater
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than kT; in this model, AE = 0.8eV~ 23kT. Reactants, diffusing in from other
parts of the cell, could adsorb preferentially to specific locations (enzymes) at the
reaction center, undergo reaction, and their products could preferentially desorb
and diffuse back into the cell. Like pieces of metal laid together on an anvil and
artfully struck to join them, reactants could be enzymatically forged using the
energy of superthermal electrons delivered down the conducting ladder, perhaps
in ways akin to ATP synthase. ATP synthase is a protein complex that resides in
the membranes of chloroplasts and mitochondria. It catalyses the production of
ATP using proton current through the membrane [31]. A proton gradient is estab-
lished across the membrane by catabolic processes and the leakage current back
across the membrane, down the gradient, through a channel in the ATP synthase
catalyses the formation of ATP via phosphorylation of ADP. It is conceivable that
thermosynthetic life could utilize similar intermolecular protein complexes as their
reaction centers.

Specificity in the reaction direction could be further enhanced if the binding
sites in the reaction center were chemically tuned to strongly adsorb reactants and
quickly desorb products. In other words, reactants would be tightly bound on the
reaction template until a high energy electron falls through the membrane poten-
tial and drives the reaction forward, at which time the product is loosely bound
and, therefore, quickly desorbs and diffuses away, thereby supressing the reverse
reaction. This type of specificity in adsorption and desorption are hallmarks of
enzymes.

The reactants, coupled with reactant-induced conformational changes in the
binding enzyme, could act as an electronic switch in the reaction center; that is,
electrons in the base of the pyramid would discharge through the reaction center
when (and only when) the reactants are present in the reaction center. This
description closely resembles the plasma (Chapter 8) and solid state (Chapter 9)
thermal capacitive discharges. An electrical circuit is similar to that of the plasma
paradox (Figure 8.8b, §8.4) is easily envisioned.

Thus, between the large potential energy rise upward through the carbon con-
duction ladder, the possibly diodic nature of the ladder, the reactant-product
binding specificity of the reaction center, and its possible switching action, it ap-
pears that a unidirectional current is favored for this curcuit. At first glance, this
seems to violate the principle of detailed balance — which would demand no net
current flow in the circuit — but since this system involves an inherently nonequi-
librium process (a 0.8eV electrons driving a chemical reaction), detailed balance
need not — and in this case, does not — apply. This chemical activity bears
strong resemblance to those proposed by Gordon (§5.2.2) and Capek (§3.6.4).

The power P, delivered by the thermosynthetic membrane should scale as
Prn ~ %, where N, is the number of charges in play in the membrane and
Twb is the average transit time for charges from the vertex to the base. N, must
be substantially less than ¢l? in order to not significantly distort the membrane’s
electric fields; for this model, let N, = 10 < [?0. 7, depends critically on the
mechanism of charge transport; as a measure we take it to be the diffusion time

of a simple molecule (Hy) through water the thickness of the membrane; that is,
~ prequAg ~
Taiff -

2
Tob ~ Tdiff ~ zggs ~ 107 %sec. For the model membrane, one has P,
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2 x 107'8W. This is orders of magnitude less than what would be allowed for
radiative or conductive heat transfer into a cell, in principle. It is also on the
order of 0.1% of the resting power requirement for mammalian cells; thus, from
the viewpoint of these energetics, this TL would probably not compete well against
FEL. On the other hand, many FEL organisms have far lower power requirements
than mammalian cells. For instance, some deep rock microbes are believed to have
infinitesimal metabolisms; by some estimates they grow and reproduce on time
scales approaching centuries, whereas surface dwelling bacteria can run through
a generation in minutes. Based on the availability of free energy sources and
nutrients and on the amount of carbon dioxide produced from the oxidation of
organic matter, it is estimated that many deep rock microbes have metabolisms
that are more than a billion times slower than surface free-energy microbes, thereby
possibly putting them below TL in energy utilization. If so, then whereas its low
metabolic rates makes it unlikely to compete successfully with FEL on the surface,
thermosynthetic life might compete quite well with free energy life in the deep
subsurface.

The above diodic biochemical circuit should, of course, be considered critically
in light of the failure of solid state diodes to rectify their own currents, thereby
failing as second law challenges. Superficially, this biochemical diode bears re-
semblance to the solid state diode considered by Brillouin [32], Van Kampen [33],
McFee [34] and others. This one, however, relies on quantum molecular processes,
rather than on more classical solid state processes, and so cannot be directly com-
pared. More detailed physical chemical analysis is currently being undertaken.

Thermosynthetic life would seem to enjoy several evolutionary advantages over
free energy life. Most obvious is freedom from reliance on free energy sources since
it simply harvests energy from its own thermal field. It is unclear whether this
would allow it to economize on its metabolic machinery, but insofar as it does not
require large bursts of energy, one can imagine that TL would not be so dependent
on energy storage mechanisms (e.g., fats) as FEL. Once grown, TL could, in
principle, operate as a closed thermodynamic cycle, neither taking in nutrients
nor expelling wastes as FEL must. Its material needs would be satisfied by those
required for reproduction. This economy would confer evolutionary advantage
both in reducing the necessary conditions for survival but also in reducing local
bio-pollution which is known to be deleterious or even fatal to many species in
closed environments. Third, supposing TL competed with FEL at the spatial
margins of energy resources, TL could more easily strike off, explore, and inhabit
niches unavailable to FEL. For instance, were superthermophiles to push more
deeply into the subsurface, according to the discussion above, the temperature
rise could further favor TL’s heat-driven biochemistry.

In summary, it is conceivable that thermosynthetic life could utilize macro-
scopic electrostatic potential gradients in biomembranes and other standard bio-
chemical machinery to rectify thermal energy into chemical reactions so as to
compete well with free energy life in some environments.
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10.2.3 Experimental Search

An experimental search for thermosynthetic life would probably prove problematic
at present. First, in most terrestrial environments FEL would dominate over TL,
rendering TL a trace population, at best. In more extreme environments where
FEL is crippled, perhaps in hot, deep, subsurface deposits, a search might prove
fruitful. It has been estimated that the depth-integrated biomass of subsurface
microbes might be equivalent to a meter or more thick of surface biomass over the
entire planetary surface [17, 25]. Most of these organisms have not been cataloged
or studied. Second, the vast majority of all microbes — surface or subsurface
dwelling — are either difficult or impossible to culture in the laboratory; it is
estimated that perhaps less than 10% of microbes from any random natural setting
can be cultured with present techniques. Since, in principle, full-fledged TL might
ingest little or no chemical fuel (aside from that required for reproduction) and
might expel little or no chemical waste, many standard tests for life should fail.

The above profile for TL — small, unicellular, anaerobic, hyperbarophilic su-
perthermophiles, geologically and hydrologically isolated from FEL in long-term,
stable, free-energy poor environments — suggests how and where TL might be
discovered. For pure TL, a search might be conducted in deep, geologically stable
rock that is nearly biochemically barren both of material and energy resources;
that is, look where there is little hope of finding anything alive. Rock samples with
organisms, but lacking appropriate levels of biological wastes would be signposts
for TL. Thermosynthetic life might be physically subsumed into the cells of stan-
dard free energy life, perhaps in a role similar to that of mitochondria which are
believed to have once been free living cells before being captured and incorporated
as the energy-producing cellular machinery of parent cells. Hybrid FEL-TL might
display the advantages of both types of life.

Recovery of deep subsurface microbes has been carried out to depths of 5.2km in
igneous rock aquifers. Boreholes (without microbe recovery) have been conducted
to depths of 9.1 km, so searches for proposed thermosynthetic life appear feasible.
Culturing would probably be more problematic. One might suppose that TL can
be discriminated experimentally from FEL by isolating a mixed culture from all
free energy sources for sufficiently long to starve FEL, thereby isolating only TL.
Unfortunately, sufficiently long can be very long. Microbes can place themselves
in low-energy, sporulating, static modes for years, decades, and perhaps centuries
or millenia awaiting favorable conditions. With microbes, sometimes there seems
to be no clear distinction between fully alive and truly dead.

Ancient samples might offer good candidates for TL. Recently, viable cultures
have been made of a halotolerant bacterium believed to have been entombed in
salt crystals for 2.5 x 10% years [27]. It is unclear how such organisms remain viable
for millenia against the ravages of natural radioactivity and thermal degradation.
There are a number of biochemical and genetic repair processes that contribute
but, presumably, all require free energy. A reliable energy source like thermosyn-
thesis would be convenient for such ongoing repair.

DNA/RNA analysis might eventually help identify TL. Currently, it can be
used to identify species, but it cannot yet be used to predict the function, structure,
or viability of an organism. Presumably, genomics will eventually advance to the
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point where cellular structure and biochemical function can be predicted from
DNA/RNA analysis alone such that thermosynthetic life forms could be identified
solely from their genetic maps. This type of search, however, is still years or
decades away.

In summary, given the exigencies of natural selection and the plausibility of
second law violation by biologically-inspired systems, we predict that thermosyn-
thetic life will be discovered in the deep subsurface realm, and that perhaps some
forms of free energy life will be found to resort to it under suitable circumstances
in less extreme environments.

10.3 Physical Eschatology

10.3.1 Introduction

The history and future of the universe are inextricably tied to the second law.
That the cosmos began in a low gravitational entropy state destined its subsequent
thermodynamic evolution into the present. And, to a fundamental degree, its fate
is defined by its inexorable march toward equilibrium. Although heat death in the
Victorian sense has been commuted into merely heat coma by modern cosmology,
the prognosis is still rather bleak.

Study of the far future and the end of the universe has become a popular
scientific pastime, in many ways replacing religious myths with scientific ones [35-
47]. The number of books and articles on the subject are almost beyond reckoning.
In this section, we explore the physical eschatology for a universe in which the
second law is violable.

Future projections are almost certainly seriously off the mark (if not entirely
wrong) — just as are ancient myths, considered in the light of modern science —
since even the most basic escatological questions have no definitive answers. Is the
universe open or closed? Will it continue to expand or will it eventually collapse?
Is space flat? Is the proton stable? What is the nature of dark matter and dark
energy? What is the composition of 99% of the universe? What is the nature and
energy of the vacuum state? Is there a theory of everything and if so, what is it?
What is time and when did it begin? What is the role of intelligent life in the
universe?

For gaining a true understanding about the future universe, eschatological stud-
ies are probably futile because they assume that our knowledge of physical laws is
both accurate and complete. Historically, this assumption has always failed; there-
fore, there is little reason to believe it will not fail again [48, 49]. Nonetheless,
as pointed out by Dyson [35], the value of eschatology may not lie so much in
predicting the future, but in raising germane questions that might eventually lead
to better understanding.

We stand with Dyson in asserting that scientific inquiry need not be divorced
from issues of human purpose and values. Science finds fruition as and where it
touches the human condition. We are bound by the second law and to it are tied
the deepest human aspirations, fears, sufferings and joys. We would be remiss not
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to acknowledge this central truth. We hope one of the legacies of this volume will
be to help illumine our future both in light of the second law and in its probable
violation.

Most eschatologies ignore intelligent action as a factor in the development of
the universe. This is partially attributable to the scientific habit of ‘ignoring the
observer,” but it is also largely in recognition of mankind’s relative impotence
within the cosmic order. The latter might not always be the case. Consider, for
example, that humans are now the primary movers of soil on Earth, outstripping
natural processes; we have significantly altered between 1/4 and 1/3 of the Earth’s
surface. Over the last several thousand years we have modified the composition
of the atmosphere sufficiently to change the climate measurably. We now extract
fish from the world’s oceans at rates equaling or exceeding their rates of replen-
ishment. As a species, we are both “the prince of creation” [50] and a principal
instrument of mass extinction. If the last 100 years are any indication of the dom-
inance humans can wield over their home planet, then extrapolating this last 10~7
fraction of Earth’s history out to cosmological time scales, one cannot rule out
the possibility that intelligent action — though almost certainly not genetically
human and, hopefully, more than humanly wise — could have a significant effect
on the cosmic order. Dyson alludes to this [35]:

Supposing that we discover the universe to be naturally closed and
doomed to collapse, is it conceivable that by intelligent intervention,
converting matter to radiation and causing energy to flow purposefully
on a cosmic scale, we could break open a closed universe and change
the topology of space-time so that only a part of it would collapse and
another part of it would expand forever?

(Actually, the reverse is now considered more likely.)

We wish to explore another scenario — that the second law is violable —
and speculate how this might affect humanity and the universe in the distant
future. This discussion will be relatively brief and general, in keeping with its
speculative nature. We adopt the logarithmic unit of time 7, introduced by Adams
and Laughlin [36], defined by n =Logio(7), where 7 is years since the Big Bang.
In this notation, the present is n ~ 10.

The fate of the universe for (n < 100) depends on many unknows, some of which
are listed above. Chief among these are whether the universe will expand forever
and whether the proton is stable. Under the assumptions of continuing expansion
and proton decay, the various cosmic ages proposed by Adams and Laughlin [36]
are summarized as follows:

Radiation-Dominated Era (—oo < n < 4): Big Bang, expansion, parti-
cles and light elements created. Energy primarily in radiation form.
Stelliferous Era (6 < n < 14): Energy and entropy production domi-
nated by stellar nuclear processes. Energy primarily in matter form.
Degenerate Era (15 < n < 37): Most baryonic matter found in stellar
endpoints: brown dwarfs, white dwarfs, neutron stars. Proton decay
and particle annihilation.
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Black Hole Era (38 < n < 100): Black holes, the dominate stellar ob-
jects, evaporate via Hawking process.

Dark Era (n > 100): Baryonic matter, black holes largely evaporated.
Detritus remains: photons, neutrinos, positrons, electrons.

This grim analysis ignores issues of dark matter and dark energy.

Classical heat death, discovered shortly after the discovery of the second law
[51, 52, 53] is a process by which the universe moves toward thermodynamic equi-
librium as it exhausts its available free energy sources. At its terminus, the universe
becomes uniform in temperature, chemical potential, and entropy. It is lifeless. In
the latter half of the 19t and through the early 20" centuries, before cosmolog-
ical expansion was discovered, the general sentiment surrounding heat death was
perhaps most famously expressed by Bertrand Russell [54]:

All the labours of the ages, all the devotion, all the inspiration, all
the noonday brightness of human genius are destined to extinction in
the vast death of the solar system, and ... the whole temple of man’s
achievement must inevitably be buried beneath the debris of a universe
in ruins.

Hope for temporary reprieve is offered by Bernal [55]:

The second law of thermodynamics which ... will bring this universe
to an inglorious close, may perhaps always remain the final factor.
But by intelligent organizations the life of the Universe could probably
be prolonged to many millions of millions of times what it would be
without organization.

Even after the modifications wrought by cosmological expansion, the fateful effects
of the second law remain, as pointed out more recently by Atkins [56]:

We have looked through the window on to the world provided by the
Second Law, and have seen the naked purposelessnes of nature. The
deep structure of change is decay; the spring of change in all its forms
is the corruption of the quality of energy as it spreads chaotically, irre-
versibly and purposelessly in time. All change and time’s arrow, point
in the direction of corruption. The experience of time is the gearing
of the electrochemical processes in our brains to this purposeless drift
into chaos as we sink into equilibrium and the grave.

This depressing vision — as inescapable as the second law itself — has pene-
trated so deeply into Western culture and consciousness as to be almost invisible.
Arguably, the second law is no longer simply a scientific principle; it has become
a sociological neurosis of Western civilization.
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10.3.2 Cosmic Entropy Production

For this discussion we assume an ever-expanding universe since, in the last decade,
strong evidence for it has accumulated. This includes observations of distant
supernovae, cosmic microwave background (CMB) anisotropies, and inadequate
gravitating matter inventories to cause collapse [57]. There are, of course, many
eschatologies that assume collapse [44, 58, 59]. Since the apparent discovery of
dark energy with its negative pressure [60, 61], the traditional topological terms
open (2 > 1) and closed (2 < 1) are no longer adequate to describe cosmological
evolution. Even a topologically closed universe can undergo continuous expansion
given a positive cosmological constant (negative pressure), as is associated with
dark energy.

In the standard cosmological model, the universe begins with exceptionally
low gravitational entropy. That it does not immediately achieve something akin
to thermal equilibrium — for instance, during the recombination era (z ~ 1500)
when it moved from a fairly spatially uniform plasma state to a neutral atom
state — is due primarily to the gravitational clumping and, to a lesser degree,
to the cosmic expansion itself which continually creates more configuration states
for matter. As large and small scale structures emerged (stars, galaxies, super-
clusters), thermodynamic entropy production gave way to gravitational entropy
production. This, in turn, allowed further thermodynamic entropy production,
e.g., in the form of stellar nucleosynthesis, planetary formation, geochemistry, and
life.

Systems are driven forward thermodynamically — kept out of equilibrium —
not by entropy per se, but by entropy gradients. This was recognized as far back
as Poincaré. The Earth’s biosphere, for instance, is driven by the solar-terrestrial
entropy gradient more surely than it is driven by solar energy. This gradient
has been conveniently expressed by Frautschi through photon counting [62]. For
every fusion nucleon at the core of the Sun (T ~ 1.5 x 107K), at the Sun’s sur-
face (photosphere, T' = 5800K) roughly 5 x 10% photons are emitted. Each solar
photon reaching Earth is converted, via photosynthesis, biochemical reactions,
and thermalization, into roughly 20 photons (~ 538000011(( ~ 20). These are then
mostly radiated back into space where they eventually equilibrate, each producing
roughly another 100 CMB photons. Thus, a single, well-localized — and appar-
ently entropy-reducing — fusion reaction in the Sun’s core gives rise to ~ 1019
photons and substantial entropy. Thus, it is fair to say that it is not the Sun’s
energy that drives the Earth’s biosphere; rather, it is the solar-terrestrial entropy
gradient. Were there not an entropy gradient between the two, then by definition
they would be at mutual equilibrium and the nonequilibrium processes necessary
for life would not be possible.

In the far future, the march toward equilibrium will step to a different beat:
rather than being set by nuclear fusion, it will be set mainly by proton decay,
black hole and positronium formation and evaporation. If the cosmos continues to
expand, however, it can never reach constant temperature or equilibrium. Thus,
while it may dodge classical heat death, it still dies in the sense that the entropy of
comoving volumes asymptotically approach a constant value. This limiting value
should be far below that set by the Bekenstein limit [62, 63]. Actually, in most
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Logso Relative Enlropy]

Entropy Source An [ncr%abs;BOver
Stellar Nucleosynthesis 11 -2
Black Hole Formation
-Stellar 11 <10
-Galactic <20 <21
-Galactic Supercluster <20 <24
Proton Decay >32 3
Black Hole Evaporation <106 <24
Positron Formation
and Decay >116 >13

Table 10.2: Primary entropy production into the far-future (n < 120), after
Frautschi [62]. Duration is expressed in An and total entropy produced is com-
pared to entropy of CMB.

cosmological scenarios, the entropy of a comoving frame falls further and further
behind its theoretical maximum.

Entropy production is proposed to extend into the far-future (n > 50) [36,
62]. Several of the dominant sources are listed in Table 10.2. The predominant
future entropy source should be black hole evaporation, whose total integrated
entropy production should outpace stellar nucleosynthesis by roughly 26 orders of
magnitude. Note, too, the entropy associated with Hubble expansion is negligible
compared with it. This underscores the tremendously small initial entropy of the
cosmos relative to its theoretical maximum.

The pinnacle of gravitational entropy is the black hole. The classical black
hole is a thermodynamically simple object, specified entirely by three parameters:
mass, angular momentum and electric charge. Particles falling into a black hole
lose their individual identities and many of their normally conserved properties
(e.g., baryon number, lepton number). Since a hole’s interior quantum states are
not measurable, they are equally probable; thus, a black hole represents a real
information sink and entropy source. The Bekenstein-Hawking entropy of a black
hole of mass Mgy [64]

47rkGM§H

- (10.4)
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is enormous compared to standard thermodynamic sources. For instance, the
gravitational entropy for a one solar mass black hole is S‘%H ~ 1077, while the
thermodynamic entropy of the Sun is ZSu= ~ 1058, As for other gravitational
entropies, black hole entropy is nonextensive, scaling as M3y. Since Mgy is pro-
portional to radius (Mpy = Rggcz ), a hole’s entropy is proportional to its surface
area A:
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Spi = ——A (10.5)

Since traditional black holes only accrete mass, thereby increasing their entropies
and areas, a gravitational analog to the thermodynamic second law can be for-
mulated. If S, is defined as the entropy of mass-energy outside a hole, then a
generalized entropy can be defined, S, = S,,, + Sgu. The generalized second law
states that S, never decreases. (Each law of classical thermodynamics has a black
hole equivalent.)

In 1974, Hawking proposed black hole evaporation via emission of thermal
quantum particles [65, 66]. To it an effective temperature can be ascribed:
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~6.2x1078 {M—;} K. (10.6)

The evaporation timescale for a hole (7 (yr)) should be roughly
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Clearly, for even the smallest black hole generated by standard astrophysical pro-
cesses, the evaporation time is tens of orders of magnitude longer than the age
of the universe: the far future. Evaporation is in the form of random thermal
particles with the maximum entropy per unit mass.

The maximum value of entropy for a system of radius R and energy F is given
by the Bekenstein limit [63]:

2nRE
S S hC 3
This limit can be attained by black holes.

The action of a black hole can be likened a bit to a home trash compactor:
relatively low-entropy items like fruits and vegetables are thrown in, ground up
and mixed into a high entropy state, compacted and then, as they rot, slowly
evaporate back out as a diffuse, non-descript, high-entropy gas.

(10.8)

10.3.3 Life in the Far Future

Whether one subscribes to traditional thermodynamic heat death or to merely
heat coma mediated by proton decay and black hole evaporation, the second law
(% > 0) is a prime mover and the grim reaper. If the second law can be violated
and applied on astrophysical scale lengths, however, then it would seem our escha-
tological fate might be altered. The basic requirement for survival is this: that the
natural rate of entropy production be less than or equal to the entropy reduction
rate achieved by second law violation. Too little is known about either process
to claim a theoretical victor at this point. Nonetheless, we briefly introduce three
scenarios by which life might at least be extended in a dying universe.
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Matrix: Within our cosmological horizon (R ~ 10%°m) it is estimated there
are on the order of 10! galaxies of average mass 10''Mg, giving for the entire
universe a mass on the order of 1052kg. The baryon number is about Nj ~
107; there are roughly 10° photons per baryon, predominately in the CMB. (It
is estimated the cosmic mass-energy is fractionated into roughly 73% dark energy
(nature unknown), 23% dark matter (nature unknown), and 4% baryonic matter
(only about 25% of which can be seen or inferred directly); thus, roughly 99% of
the mass-energy of the universe remains mysterious.)

Let the mass and scale length of the universe be M and R, respectively. Let
this mass be rolled into large sheets whose atomic scale length is » and whose
thickness in number of atomic layers is n. The number of sheets of scale size
R that can be constructed from M should be roughly N ~ ]x%f. For n = 10,
m = 10amu and M = 10°2kg one has N, = 10%. In other words, the intrinsic
mass of the universe could, in principle, be fashioned into a matrix of 10% parti-
tions spanning the universe. Arranged uniformly, they would be spaced roughly
every 10%ly. If these partitions were antennae and second law violators for CMB
or other far-future particle fields (e.g., neutrinos, e*/e™), then the universe’s en-
ergy might be recycled many times and heat coma forestalled. This, of course,
presupposes the harvested energy would be sufficient to repair the ravages of the
natural entropic process like proton decay [62]. Since the energy intercept time
for this matrix should be on the order of 10*yr, while primary decay processes like
proton decay and black hole evaporation exceed 1032yr, if the matrix were even
only mildly efficient at entropy reduction, it should be able to keep pace. Easy
calculations show that a matrix could, in principle, reverse the current entropy
production by stellar nucleosynthesis [67]. Additionally, if the future civilization
were able to rearrange the furniture on a cosmic level — see Dyson above — then
perhaps spacetime topology could be modified either to avert continued expansion,
so as to create a thermodynamically steady-state universe or sub-universe.

Outpost: On a more limited scale, the second law might be held at bay through
construction of a finite outpost, perhaps the size of a solar system, surrounded by
a well-insulated thermal shell. Like the matrix, it would harvest heat and particle
from the exterior thermal background fields and concentrate it internally. Its suc-
cess depends on it being well-insulated to heat and particle emission. Presumably,
it would recycle its own interior heat into work. As the surrounding universal
temperature falls and this is communicated to its interior, however, the outpost
would have to rely on lower and lower temperature second law violation processes
and lower power densities. Since negentropic process have been proposed down to
superconducting temperatures already (Chapter 4), it is plausible that lower tem-
perature processes will be discovered. The primary requirement for sustainability
is that the heat harvested from the exterior space at least match the heat (and
mass-energy due to particle decay) that leaves through the insulating shell®.

2For thermal insulation, one might guess that the optimum would be a hollow black hole (e.g.,
a thin spherical shell: R = 200 AU, M = 10°Mg, Ty = 10717K, mg ~ 1092yrs). Unfortunately,
general relativity forbids this as a stable geometry, although naive calculations indicate it might
be possible.
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Thermal Life There has been considerable debate as to whether life, intelligence
and consciousness (LIC) can survive indefinitely in a dying universe [35, 62]. We
will assume that if life is possible, so too are intelligence and consciousness. A
general condition assumed by Dyson invokes entropy: [ %dt = oo; that is, since
LIC rely on inherently nonequilibrium processes, the entropy growth in a comoving
volume must continuously increase. If the second law is violable, however, this
limitation is suspect.

The very definitions of and conditions for LIC are themselves a matter of
longstanding debate and we will not be drawn into the fray. We note, however,
that since thermosynthetic life appears possible in principle (§10.2), there may
be hope that life could survive in the far future by directly tapping the thermal
fields alone, even if an entropy gradient is absent. Hopefully, such life would be
more subtle than Hoyle’s black cloud [68] or Capek’s sentient computer [69], but
as before, its energy budget would be limited to what it could harvest from its
surroundings, which, if the universe becomes increasingly diffuse, would constitute
a long, slow road into heat coma.

Life is commonly considered antithetical to and distinguishable from thermo-
dynamic equilibrium in at least two fundamental ways:

1) Biotic matter is physically arranged in a non-random, far from equi-
librium configuration.

2) Biochemical reactions are superthermal and cannot be maintained
at equilibrium.

Both assumptions should be re-examined in light of second law challenges.
With regard to (1), there is no absolute, agreed upon definition of order, so con-
versely, there is no absolute definition of disorder. Furthermore, large-scale or-
ganized dynamic structures are not forbidden at equilibrium; Debye sheaths, for
example, are dynamically-maintained large-scale structures that arise by thermal
processes at the edges of plasmas within which highly non-equilibrium processes
occur. Thus, it is not clear a priori that equilibrium could not support the sort of
large scale energy-producing structures necessary for life.

Assumption (2) is undercut by the spectrum of second law challenges in this
volume. In MPG systems (§10.1.1), superthermal nonequilbrium particle currents
are maintained in equilibrium settings. Nikulov’s persistent supercurrents arise
out of purely quantum effects at low temperatures (§4.4). One cannot rule out
that other contra-entropic effects will be discovered at even lower temperatures.

It is unclear what form life might take in the far future. Must it be solid-
liquid like terrestrial life? Could it exist, for example, as complex, long-range,
correlations in the electron-positron detritus predicted for the far future? It is
not clear what the minimum requirements for life are, especially given that its
definition is still a matter of debate.

Thermosynthetic life is predicted to be survivable in an equilibrium environ-
ment, but must it be at most an island in an equilibrium sea? Could it co-exist with
thermal equilibrium; that is, might life assimilate itself directly into the thermal
field? This is a modest extrapolation from J.A. Wheeler’s mystic vision of the uni-
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verse as “a self-synthesizing system of existences, built on observer-participancy”
[70]. (Cépek’s phonon continuum model (§3.6.6) might also be mined for ideas on
how this might play out.) Presumably, this thermal life would wind down with the
rest of the universe. Since this would not be a struggle against nature, but rather
an acquiescence to it, this could be considered an if you can’t beat ’em, join ’em
strategy for the far future.

Although violation the second law appears useful for survival into the far future,
one should be careful of what one wishes for. Entropy reduction, though useful, is
an impoverishment of the universe’s phase space complexity. Moreover, if carried
out on cosmic scales, it would amount to a ‘turning back’ of the thermodynamic
clock. This reversal of thermodynamic time would not imply time reversal in
the palindromic sense that physical processes would precisely reverse — that the
universe would retrace its exact path in phase space — but it would entail returning
the universe to a lower entropy state. The clock would be turned back to a
new and different clock each time. It would be akin to erasing a chalkboard in
preparation for writing something new — and getting the chalk stick back, to
boot3. Presumably, the cosmic horizon would not be affected since the mass-
energy would not be changed, but simply rearranged. However, if carried out to
the extreme, converting and removing all heat, the universe could freeze and die
just as surely as by standard heat death?. A little bit of disorder (heat) is a good
thing.

In conclusion, we reiterate that the continuing uncertainties surrounding cos-
mological issues, basic physical laws, and definitions of life, intelligence and con-
sciousness make eschatological studies largely moot. The second law, however,
appears integral to most, such that its possible violation should be considered in
future studies.

10.4 The Second Law Mystique

Perhaps more has been written about the second law across the breadth of
human knowledge and endeavor than about any other physical law. Direct and
indirect references to it can be found in all branches of science, engineering, eco-
nomics, arts, literature, psychology, philosophy, and popular culture.

Quite aside from its profound physical, technological, social, philosophical and
humanistic implications, the second law is famous for being famous. It has become
the epitome of scientific truth, notorious for its absolute status, virtually unques-
tioned by the scientific community. Much of its mystique can be traced to the
imprimaturs of scientists like Einstein, Planck, Eddington, Fermi, Poincaré, Clau-
sius, and Maxwell. Their reputations are reciprocally burnished by association

3Earlier thinking on time and change can be found in the Rubdaiydt of Omar Khayyam (ca.
1100 C.E.): “The moving finger writes and having writ moves on. And all your poetry and wit
cannot erase half a line, nor all your tears one word of it.”

4“Some say the world will end in fire, some say ... that for destruction ice is also great, and
would suffice.” Robert Frost, Fire and Ice (1920).
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with this fundamental law; thus, a cycle of mystique is established.

The following are representative quotes from the sciences [71] and humanities
dealing with the second law and its absolute status. Outside of theatre, rarely does
one find such melodrama.

Einstein [72]

[Classical thermodynamics] is the only theory of universal content con-
cerning which I am convinced that, within the framework of applica-
bility of its basic concepts, it will never be overthrown.

Eddington [73]

The law that entropy always increases — the second law of thermo-
dynamics — holds, I think, the supreme position among the laws of
Nature. If someone points out to you that your pet theory of the uni-
verse is in disagreement with Maxwell’s equations — then so much the
worse for Maxwell’s equations. If it is found to be contradicted by ob-
servation — well, these experimentalists bungle things sometimes. But
if your theory is found to be against the second law of thermodynamics
I can give you no hope; there is nothing for it but to collapse in deepest
humiliation.

Fermi [74]

The second law of thermodynamics rules out the possibility of con-
structing a perpetuum mobile of the second kind ... The experimental
evidence in support of this law consists mainly in the failure of all
efforts that have been made to construct a perpetuum mobile of the
second kind.

Clausius [75]

Everything we know concerning the interchange of heat between two
bodies of different temperatures confirms this, for heat everywhere
manifests a tendency to equalize existing differences of temperature

. Without further explanation, therefore, the truth of the principle
[second law] will be granted.

Maxwell [76]

The second law of thermodynamics has the same degree of truth as
the statement that if you throw a thimbleful of water into the sea, you
cannot get the same thimbleful of water out again.

Cengel and Boles [77]

To date, no experiment has been conducted that contradicts the second
law, and this should be taken as sufficient evidence of its validity.
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Horgan [78]

To Gell-Mann, science forms a hierarchy. At the top are those theories
that apply everywhere in the known univese, such as the second law of
thermodynamics and his own quark theory.

Maddox [79]

The issue is not whether the second law of thermodynamics is valid in
the ordinary world; nobody doubts that.

Park [80]

Each failure, each fraud exposed, established the laws of thermodynam-
ics more firmly. ... Extending mistrust of scientific claims to include
mistrust of the underlying laws of physics, however, is a reckless game.

Maddox [81]

Maxwell’s demon is therefore no longer regarded as a limitation of the
second law.

Lieb and Yngvason [82]

No exception to the second law of thermodynamics has ever been found
— not even a tiny one.

Brillouin [83]

Nobody can doubt the validity of the second principle, no more than
he can the validity of the fundamental laws of mechanics.
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In the humanities, explicit, implicit and interpretable references to the second
law are uncountable. Many dwell on the futility of existence within its sphere,
while others lament the heat death of the universe [54, 55, 56, 84]. The following

are exemplars.

George Gordon (Lord Byron), from Darkness [85]

I had a dream, which was not a dream.

The bright sun was extinguish’d, and the stars

Did wander darkling in the eternal space,

Rayless, and pathless, and the icy earth

Swung blind and blackening in the moonless air;
Morn came and went — and came, and brought no day...
... The world was void,

The populous and the powerful was a lump
Seasonless, herbless, treeless, manless, lifeless,

A lump of death — a chaos of hard clay...

The waves were dead; the tides were in their grave,
The Moon, their mistress, had expired before;
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The winds were wither’d in the stagnant air,
And the clouds perish’d; Darkness had no need
Of aid from them — She was the Universe.

D.P. Patrick, from Helena Lost

... Though Time must carve into our flesh his name,
Erase the precious ledgers of our minds,

Corrode our bones, corrupt our breaths and maim,
And, thus, to us Oblivion consign ...

Robert Frost, Fire and Ice [85]

Some say the world will end in fire,
Some say in ice.

From what I've tasted of desire

I hold with those who favor fire.
But if it had to perish twice,

I think I know enough of hate

To say that for destruction ice

Is also great

And would suffice.

Archibald Macleish, from The End of the World [85]

... And there, there overhead, there, there, hung over
Those thousands of white faces, those dazed eyes,
There in the starless dark the poise, the hover,
There with vast wings across the canceled skies,
There in the sudden blackness the back pall

Of nothing, nothing, nothing — nothing at all.

In the literary sphere, resignation to the second law and heat death seems
almost a romantic death wish; however, it is firmly rooted in scientific faith. In
the scientific sphere this resignation, though resting on broad experimental and
theoretical support, ultimately, is also rooted in faith, especially as it pertains to
second law inviolability. It has been a goal of this volume to shake this faith in
the hope of attaining something more illuminating.
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Plate IV Atlas 2-D numerical simulations of electric field for three related varia-
tions of the standard device. a) Case 1: standard device without J-IT gap; b) Case
2: standard device; ¢) Case 3: standard device with 3004 x 600A undoped silicon
piston at gap center.
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standard device.

(TOP): Maximum power output versus gap width (z4) and contact fraction (f.).
Contours vary linearly from 1072W /device (red) to 1.2 x 1078W /device (yellow).
(BOTTOM): Power density (Wm™2) versus z, and f.. Contours vary logarith-

mically from 10* Wm™2 (red) to 10*°Wm=2 (yellow). Star indicates location of
standard device.
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